This paper introduces a dielectrophoretic system for the manipulation and separation of microparticles. The system is composed of five layers and utilizes microarray dot electrodes. We validated our system by conducting size-dependent manipulation and separation experiments on 1, 5 and 15 μm polystyrene particles. Our findings confirm the capability of the proposed device to rapidly and efficiently manipulate and separate microparticles of various dimensions, utilizing positive and negative dielectrophoresis (DEP) effects. Larger size particles were repelled and concentrated in the center of the dot by negative DEP, while the smaller sizes were attracted and collected by the edge of the dot by positive DEP.
Recent advances in microfluidic systems, particularly in the Micro Total Analysis System (μTAS) or Lab On a Chip (LOC), drive the current analysis tools and equipment towards miniaturization, rapid at-line testing and mobility. The state-of-the-art microfluidic technology targets a wider range but smaller volumes of analytes, making the analytical procedure relatively easier and faster. This trend together with faster electronics and modern instrumentation systems will make real-time and in situ analysis a definite possibility. This review focuses on microchip capillary electrophoresis with amperometric detection (MCE-AD) for the detection of DNA and other electroactive analytes. The problems associated with the microchip design, in particular the choice of materials and the configuration of electrodes are discussed thoroughly and solutions are proposed. Significant developments in the related areas are also covered and reviewed critically.
Combined computational and experimental strategies for the systematic design of chemical sensor arrays using carbonitrile neutral receptors are presented. Binding energies of acetonitrile, n-pentylcarbonitrile and malononitrile with Ca(II), Mg(II), Be(II) and H⁺ have been investigated with the B3LYP, G3, CBS-QB3, G4 and MQZVP methods, showing a general trend H⁺ > Be(II) > Mg(II) > Ca(II). Hydrogen bonding, donor-acceptor and cation-lone pair electron simple models were employed in evaluating the performance of computational methods. Mg(II) is bound to acetonitrile in water by 12.5 kcal/mol, and in the gas phase the receptor is more strongly bound by 33.3 kcal/mol to Mg(II) compared to Ca(II). Interaction of bound cations with carbonitrile reduces the energies of the MOs involved in the proposed σ-p conjugated network. The planar malononitrile-Be(II) complex possibly involves a π-network with a cationic methylene carbon. Fabricated potentiometric chemical sensors show distinct signal patterns that can be exploited in sensor array applications.
Mesenchymal stems cells (MSCs) are currently the focus of numerous therapeutic approaches in tissue engineering/repair because of their wide multi-lineage potential and their ability to modulate the immune system response following transplantation. Culturing these cells, while maintaining their multipotency in vitro, currently relies on biological substrates such as gelatin, collagen and fibronectin. In addition, harvesting cells from these substrates requires enzymatic or chemical treatment, a process that will remove a multitude of cellular surface proteins, clearly an undesirable process if cells are to be used therapeutically. Herein, we applied a high-throughput 'hydrogel microarray' screening approach to identify thermo-modulatable substrates which can support hES-MP and ADMSC growth, permit gentle reagent free passaging, whilst maintaining multi-lineage potential. In summary, the hydrogel substrate identified, poly(AEtMA-Cl-co-DEAA) cross-linked with MBA, permitted MSCs to be maintained over 10 passages (each time via thermo-modulation), with the cells retaining expression of MSC associated markers and lineage potency. This chemically defined system allowed the passaging and maintenance of cellular phenotype of this clinically important cell type, in the absence of harsh passaging and the need for biological substrates.