Displaying all 6 publications

  1. Moroi K, Sato T
    Biochem. Pharmacol., 1975 Aug 15;24(16):1517-21.
    PMID: 8
    Matched MeSH terms: Microsomes, Liver/enzymology*
  2. Sim SM, Back DJ, Breckenridge AM
    Br J Clin Pharmacol, 1991 Jul;32(1):17-21.
    PMID: 1909542
    1. Zidovudine (3'-azido-3'-deoxythymidine; AZT) is the drug of proven efficacy available for the treatment of patients with AIDS or ARC. It is eliminated mainly by hepatic glucuronidation. Therefore, interference with this metabolic pathway may lead to enhancement of AZT effect or to increased toxicity of the drug. We have examined the effect of a number of drugs which themselves undergo glucuronidation on AZT conjugation by human liver microsomes in vitro. 2. AZT glucuronidation followed Michaelis-Menten kinetics. The apparent Km and Vmax values (mean +/- s.d., n = 5), were 2.60 +/- 0.52 mM and 68.0 +/- 23.4 nmol h-1 mg-1, respectively, as determined from Eadie-Hofstee plots. 3. Dideoxyinosine, sulphanilamide and paracetamol were essentially non-inhibitory at concentrations up to 10 mM (4 times the concentration of AZT in the incubation). The most marked inhibitory effects were seen with indomethacin, naproxen, chloramphenicol, probenecid and ethinyloestradiol, with enzyme activity decreased by 97.7, 94.9, 88.7, 83.4% and 79.0%, respectively, at a concentration of 10 mM. Other compounds producing some inhibition of AZT conjugation were oxazepam, salicylic acid and acetylsalicylic acid. 4. Further studies are necessary to characterise the inhibition observed but the method described enables a screen of potentially important drug interactions to be carried out.
    Matched MeSH terms: Microsomes, Liver/enzymology
  3. Muhammad H, Gomes-Carneiro MR, Poça KS, De-Oliveira AC, Afzan A, Sulaiman SA, et al.
    J Ethnopharmacol, 2011 Jan 27;133(2):647-53.
    PMID: 21044879 DOI: 10.1016/j.jep.2010.10.055
    Orthosiphon stamineus, Benth, also known as Misai Kucing in Malaysia and Java tea in Indonesia, is traditionally used in Southeastern Asia to treat kidney dysfunctions, diabetes, gout and several other illnesses. Recent studies of Orthosiphon stamineus pharmacological profile have revealed antioxidant properties and other potentially useful biological activities thereby lending some scientific support to its use in folk medicine. So far the genotoxicity of Orthosiphon stamineus extracts has not been evaluated. In this study the genotoxic potential of Orthosiphon stamineus aqueous extract was investigated by the Salmonella/microsome mutation assay and the mouse bone marrow micronucleus test.
    Matched MeSH terms: Microsomes, Liver/enzymology
  4. Somchit N, Wong CW, Zuraini A, Ahmad Bustamam A, Hasiah AH, Khairi HM, et al.
    Drug Chem Toxicol, 2006;29(3):237-53.
    PMID: 16777703
    Itraconazole and fluconazole are potent wide spectrum antifungal drugs. Both of these drugs induce hepatotoxicity clinically. The mechanism underlying the hepatotoxicity is unknown. The purpose of this study was to investigate the role of phenobarbital (PB), an inducer of cytochrome P450 (CYP), and SKF 525A, an inhibitor of CYP, in the mechanism of hepatotoxicity induced by these two drugs in vivo. Rats were pretreated with PB (75 mg/kg for 4 days) prior to itraconazole or fluconazole dosing (20 and 200 mg/kg for 4 days). In the inhibition study, for 4 consecutive days, rats were pretreated with SKF 525A (50 mg/kg) or saline followed by itraconazole or fluconazole (20 and 200 mg/kg) Dose-dependent increases in plasma alanine aminotransferase (ALT), gamma-glutamyl transferase (gamma-GT), and alkaline phosphatase (ALP) activities and in liver weight were detected in rats receiving itraconazole treatment. Interestingly, pretreatment with PB prior to itraconazole reduced the ALT and gamma-GT activities and the liver weight of rats. No changes were observed in rats treated with fluconazole. Pretreatment with SKF 525A induced more severe hepatotoxicity for both itraconazole and fluconazole. CYP 3A activity was inhibited dose-dependently by itraconazole treatment. Itraconazole had no effects on the activity of CYP 1A and 2E. Fluconazole potently inhibited all three isoenzymes of CYP. PB plays a role in hepatoprotection to itraconazole-induced but not fluconazole-induced hepatotoxicity. SKF 525A enhanced the hepatotoxicity of both antifungal drugs in vivo. Therefore, it can be concluded that inhibition of CYP may play a key role in the mechanism of hepatotoxicity induced by itraconazole and fluconazole.
    Matched MeSH terms: Microsomes, Liver/enzymology
  5. Abdullah NH, Ismail S
    Molecules, 2018 Oct 19;23(10).
    PMID: 30347696 DOI: 10.3390/molecules23102696
    The co-use of conventional drug and herbal medicines may lead to herb-drug interaction via modulation of drug-metabolizing enzymes (DMEs) by herbal constituents. UDP-glucuronosyltransferases (UGTs) catalyzing glucuronidation are the major metabolic enzymes of Phase II DMEs. The in vitro inhibitory effect of several herbal constituents on one of the most important UGT isoforms, UGT2B7, in human liver microsomes (HLM) and rat liver microsomes (RLM) was investigated. Zidovudine (ZDV) was used as the probe substrate to determine UGT2B7 activity. The intrinsic clearance (Vmax/Km) of ZDV in HLM is 1.65 µL/mg/min which is ten times greater than in RLM, which is 0.16 µL/mg/min. Andrographolide, kaempferol-3-rutinoside, mitragynine and zerumbone inhibited ZDV glucuronidation in HLM with IC50 values of 6.18 ± 1.27, 18.56 ± 8.62, 8.11 ± 4.48 and 4.57 ± 0.23 µM, respectively, hence, herb-drug interactions are possible if andrographolide, kaempferol-3-rutinoside, mitragynine and zerumbone are taken together with drugs that are highly metabolized by UGT2B7. Meanwhile, only mitragynine and zerumbone inhibited ZDV glucuronidation in RLM with IC50 values of 51.20 ± 5.95 μM and 8.14 ± 2.12 µM, respectively, indicating a difference between the human and rat microsomal model so caution must be exercised when extrapolating inhibitory metabolic data from rats to humans.
    Matched MeSH terms: Microsomes, Liver/enzymology
  6. Muhsain SN, Lang MA, Abu-Bakar A
    Toxicol. Appl. Pharmacol., 2015 Jan 1;282(1):77-89.
    PMID: 25478736 DOI: 10.1016/j.taap.2014.11.010
    The intracellular level of bilirubin (BR), an endogenous antioxidant that is cytotoxic at high concentrations, is tightly controlled within the optimal therapeutic range. We have recently described a concerted intracellular BR regulation by two microsomal enzymes: heme oxygenase 1 (HMOX1), essential for BR production and cytochrome P450 2A5 (CYP2A5), a BR oxidase. Herein, we describe targeting of these enzymes to hepatic mitochondria during oxidative stress. The kinetics of microsomal and mitochondrial BR oxidation were compared. Treatment of DBA/2J mice with 200mgpyrazole/kg/day for 3days increased hepatic intracellular protein carbonyl content and induced nucleo-translocation of Nrf2. HMOX1 and CYP2A5 proteins and activities were elevated in microsomes and mitoplasts but not the UGT1A1, a catalyst of BR glucuronidation. A CYP2A5 antibody inhibited 75% of microsomal BR oxidation. The inhibition was absent in control mitoplasts but elevated to 50% after treatment. An adrenodoxin reductase antibody did not inhibit microsomal BR oxidation but inhibited 50% of mitochondrial BR oxidation. Ascorbic acid inhibited 5% and 22% of the reaction in control and treated microsomes, respectively. In control mitoplasts the inhibition was 100%, which was reduced to 50% after treatment. Bilirubin affinity to mitochondrial and microsomal CYP2A5 enzyme is equally high. Lastly, the treatment neither released cytochrome c into cytoplasm nor dissipated membrane potential, indicating the absence of mitochondrial membrane damage. Collectively, the observations suggest that BR regulatory enzymes are recruited to mitochondria during oxidative stress and BR oxidation by mitochondrial CYP2A5 is supported by mitochondrial mono-oxygenase system. The induced recruitment potentially confers membrane protection.
    Matched MeSH terms: Microsomes, Liver/enzymology
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links