Displaying all 3 publications

Abstract:
Sort:
  1. Zainal Abidin S, Abbaspourbabaei M, Ntimi CM, Siew WH, Pike-See C, Rosli R, et al.
    Malays J Med Sci, 2014 Dec;21(Spec Issue):27-33.
    PMID: 25941460 MyJurnal
    MicroRNAs (miRNAs) have a crucial role in gene expression regulation and protein synthesis, especially in the central nervous system. In developing mouse embryos a novel miRNA, miR-3099, is highly expressed, particularly in the central nervous system. This study aims to determine the expression of miR-3099 during cellular differentiation of 46C mouse embryonic stem cells after neural induction with N2/B27 medium.
    Matched MeSH terms: Mouse Embryonic Stem Cells
  2. Liew LC, Gailhouste L, Tan GC, Yamamoto Y, Takeshita F, Nakagama H, et al.
    Stem Cells, 2020 04;38(4):504-515.
    PMID: 31828873 DOI: 10.1002/stem.3136
    The role of microRNAs (miRNAs) during mouse early development, especially in endoderm germ layer formation, is largely unknown. Here, via miRNA profiling during endoderm differentiation, we discovered that miR-124a negatively regulates endoderm lineage commitment in mouse embryonic stem cells (mESCs). To further investigate the functional role of miR-124a in early stages of differentiation, transfection of embryoid bodies with miR-124a mimic was performed. We showed that overexpression of miR-124a inhibits endoderm differentiation in vitro through targeting the 3'-untranslated region (UTR) of Sox17 and Gata6, revealing the existence of interplay between miR-124a and the Sox17/Gata6 transcription factors in hepato-specific gene regulation. In addition, we presented a feasible in vivo system that utilizes teratoma and gene expression profiling from microarray to quantitatively evaluate the functional role of miRNA in lineage specification. We demonstrated that ectopic expression of miR-124a in teratomas by intratumor delivery of miR-124a mimic and Atelocollagen, significantly suppressed endoderm and mesoderm lineage differentiation while augmenting the differentiation into ectoderm lineage. Collectively, our findings suggest that miR-124a plays a significant role in mESCs lineage commitment.
    Matched MeSH terms: Mouse Embryonic Stem Cells/metabolism*
  3. Mansor NI, Ntimi CM, Abdul-Aziz NM, Ling KH, Adam A, Rosli R, et al.
    Bosn J Basic Med Sci, 2021 Feb 01;21(1):98-110.
    PMID: 32156249 DOI: 10.17305/bjbms.2020.4639
    One of the strategies in the establishment of in vitro oxidative stress models for neurodegenerative diseases, such as Alzheimer's disease (AD), is to induce neurotoxicity by amyloid beta (Aβ) peptides in suitable neural cells. Presently, data on the neurotoxicity of Aβ in neural cells differentiated from stem cells are limited. In this study, we attempted to induce oxidative stress in transgenic 46C mouse embryonic stem cell-derived neurons via treatment with Aβ peptides (Aβ1-42 and Aβ25-35). 46C neural cells were generated by promoting the formation of multicellular aggregates, embryoid bodies in the absence of leukemia inhibitory factor, followed by the addition of all-trans retinoic acid as the neural inducer. Mature neuronal cells were exposed to different concentrations of Aβ1-42 and Aβ25-35 for 24 h. Morphological changes, cell viability, and intracellular reactive oxygen species (ROS) production were assessed. We found that 100 µM Aβ1-42 and 50 µM Aβ25-35 only promoted 40% and 10%, respectively, of cell injury and death in the 46C-derived neuronal cells. Interestingly, treatment with each of the Aβ peptides resulted in a significant increase of intracellular ROS activity, as compared to untreated neurons. These findings indicate the potential of using neurons derived from stem cells and Aβ peptides in generating oxidative stress for the establishment of an in vitro AD model that could be useful for drug screening and natural product studies.
    Matched MeSH terms: Mouse Embryonic Stem Cells/cytology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links