Displaying all 2 publications

Abstract:
Sort:
  1. Eshkoor SA, Ismail P, Rahman SA, Adon MY, Devan RV
    Toxicol. Mech. Methods, 2013 May;23(4):217-22.
    PMID: 23193996 DOI: 10.3109/15376516.2012.743637
    Aging is attributed to both genetic and environmental factors. Occupational exposure is one of the environmental factors with potential genotoxic effects. Researchers try to determine factors involved in genetic damages at hazards exposure that could accelerate aging. Cytochrome P450 2E1 (CYP2E1) gene contributes in activation and detoxification of the environmental hazards. This polymorphism plays an important role in susceptibility of inter-individuals to DNA damage at the occupational exposure. The current study evaluated the possible influence of this gene polymorphism in aging by genomic damages through the biomarkers alterations of micronuclei (MN), comet tail length and telomere length shortening at the exposure. In this study, buccal cells were collected from the oral cavity of exposed workers and non-exposed controls. The CYP2E1 genotypes were detected by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). The wild genotype significantly affected MN frequency (p = 0.007) and relative telomere length (p = 0.047) in the older group of workers. It was concluded that the interaction of gene polymorphism and exposure enhances DNA damage and accelerates aging consequently.
    Matched MeSH terms: Mouth Mucosa/enzymology
  2. Vincent-Chong VK, Anwar A, Karen-Ng LP, Cheong SC, Yang YH, Pradeep PJ, et al.
    PLoS One, 2013;8(2):e54705.
    PMID: 23405089 DOI: 10.1371/journal.pone.0054705
    Despite the advances in diagnosis and treatment of oral squamous cell carcinoma (OSCC), mortality and morbidity rates have not improved over the past decade. A major drawback in diagnosis and treatment of OSCC is the lack of knowledge relating to how genetic instability in oral cancer genomes affects oral carcinogenesis. Hence, the key aim of this study was to identify copy number alterations (CNAs) that may be cancer associated in OSCC using high-resolution array comparative genomic hybridization (aCGH). To our knowledge this is the first study to use ultra-high density aCGH microarrays to profile a large number of OSCC genomes (n = 46). The most frequently amplified CNAs were located on chromosome 11q11(52%), 2p22.3(52%), 1q21.3-q22(54%), 6p21.32(59%), 20p13(61%), 7q34(52% and 72%),8p11.23-p11.22(80%), 8q11.1-q24.4(54%), 9q13-q34.3(54%), 11q23.3-q25(57%); 14q21.3-q31.1(54%); 14q31.3-q32.33(57%), 20p13-p12.3(54%) and 20q11.21-q13.33(52%). The most frequently deleted chromosome region was located on 3q26.1 (54%). In order to verify the CNAs from aCGH using quantitative polymerase chain reaction (qPCR), the three top most amplified regions and their associated genes, namely ADAM5P (8p11.23-p11.22), MGAM (7q34) and SIRPB1 (20p13.1), were selected in this study. The ADAM5P locus was found to be amplified in 39 samples and deleted in one; MGAM (24 amplifications and 3 deletions); and SIRPB1 (12 amplifications, others undetermined). On the basis of putative cancer-related annotations, two genes, namely ADAM metallopeptidase domain 9 (ADAM9) and maltase-glucoamylase alpha-glucosidase (MGAM), that mapped to CNA regions were selected for further evaluation of their mRNA expression using reverse transcriptase qPCR. The over-expression of MGAM was confirmed with a 6.6 fold increase in expression at the mRNA level whereas the fold change in ADAM9 demonstrated a 1.6 fold increase. This study has identified significant regions in the OSCC genome that were amplified and resulted in consequent over-expression of the MGAM and ADAM9 genes that may be utilized as biological markers for OSCC.
    Matched MeSH terms: Mouth Mucosa/enzymology
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links