Displaying all 5 publications

Abstract:
Sort:
  1. Tan TW, Tan HL, Chung YC
    Worldviews Evid Based Nurs, 2024 Dec;21(6):687-694.
    PMID: 39572015 DOI: 10.1111/wvn.12756
    BACKGROUND: Breast cancer patients undergoing chemotherapy experience body composition changes impacting treatment outcomes. The role of resistance training in mitigating chemotherapy-induced sarcopenia in breast cancer patients is not well defined.

    AIMS: This study aims to assess the efficacy of resistance training in preventing sarcopenia among breast cancer patients undergoing chemotherapy.

    METHODS: A systematic search was conducted across PubMed, EMBASE, Medline, the Cochrane Library, and CINAHL until May 5, 2023. Selected literature focused on the effects of resistance training on body fat, muscle mass, muscle strength, and physical performance in breast cancer patients undergoing chemotherapy. Cochrane Risk of Bias tool version 2.0 was employed for quality assessment, and data were analyzed using Comprehensive Meta-Analysis version 2.0.

    RESULTS: Eleven randomized controlled trials (RCTs) showed that resistance training had a significant positive impact on reducing body fat (SMD = -0.250, 95% CI [-0.450, -0.050]), increasing lean body mass (SMD = 0.374, 95% CI [0.178, 0.571]), and enhancing handgrip strength at both the affected site (SMD = 0.326, 95% CI [0.108, 0.543]) and the nonaffected site (SMD = 0.276, 95% CI [0.059, 0.492]). Additionally, significant improvements were observed in leg press strength (SMD = 0.598, 95% CI [0.401, 0.796]) and overall physical performance (SMD = 0.671, 95% CI [0.419, 0.923]).

    LINKING EVIDENCE TO ACTION: Resistance training is a recommended intervention for reducing body fat, increasing muscle mass, muscle strength, and enhancing physical performance in breast cancer patients undergoing chemotherapy. Ideal low-intensity resistance training programs span 8-24 weeks, with 20-to-90-min sessions 2-4 times weekly. Regimens generally entail 8-12 repetitions at 40%-90% of one-repetition maximum test, with free-weight resistance training targeting major muscle groups yielding substantial benefits. Further research should explore outcomes across different chemotherapy phases and investigate long-term resistance training effects for a comprehensive view.

    Matched MeSH terms: Muscle Strength/drug effects
  2. Khong TK, Selvanayagam V, Yusof A
    Eur J Sport Sci, 2021 Feb;21(2):224-230.
    PMID: 32056510 DOI: 10.1080/17461391.2020.1730980
    Carbohydrate (CHO) mouth rinse has been shown to improve endurance performance and maintain the central drive of contracting muscles. Salt (NaCl) mouth rinse solution, often used in dentistry to desensitise the oral cavity to pain, could also activate cortical areas of the brain. Hence, the objective of this preliminary study was to investigate whether CHO (glucose) and NaCl mouth rinses could attenuate the reduction in maximum voluntary contraction (MVC) and sustained MVC (sMVC) following an endurance exercise (30-minute cycling at 70% VO2max). Ten subjects (male, age: 22 ± 1 years, weight: 65.3 ± 12.4 kg, height: 164.5 ± 7.5 cm, VO2max: 48.3 ± 6.1 mL kg-1 min-1) completed three trials of 30-minute cycling exercise. In a randomised cross-over study, in each trial, the participants rinsed using either water, 6% glucose, or 6% NaCl solution for 5 s immediately prior to and every 10 min during the cycling exercise. The MVC and sMVC were measured pre and post cycling. Analysis of variance showed significant interaction and time effects for MVC, while for sMVC there was a significant interaction with time and group effects. Both MVC and sMVC were higher post cycling in the glucose and NaCl groups compared to the water group, which suggests that activation of glucose and NaCl oral receptors could better preserve post-exercise force production. This is the first study to show that NaCl mouth rinse can produce a comparable effect on glucose. Hence, mouth rinses may be able to activate other distinct pathways that could attenuate fatigue.
    Matched MeSH terms: Muscle Strength/drug effects
  3. Eslami S, Esa NM, Marandi SM, Ghasemi G, Eslami S
    Indian J Med Res, 2014 Jun;139(6):857-63.
    PMID: 25109720
    Enhanced muscle strength is seen when resistance exercise is combined with the consumption of nutritional supplements. Although there is a limited number of studies available about the efficacy of gamma oryzanol supplementation with resistance exercise in humans, but its usage as a nutritional supplement for strength is common in athletes. The aim of this study was to determine the effects of gamma oryzanol supplementation during 9-week resistance training on muscular strength and anthropometric measurements of young healthy males.
    Matched MeSH terms: Muscle Strength/drug effects*
  4. Shiek Ahmad B, Wark JD, Petty SJ, O'Brien TJ, Gorelik A, Sambrook PN, et al.
    Epilepsia, 2015 Nov;56(11):1714-22.
    PMID: 26513212 DOI: 10.1111/epi.13136
    To investigate cross-sectional and longitudinal differences in static and dynamic standing balance measures and lower limb muscle strength in patients who are treated chronically with antiepileptic drugs (AEDs).
    Matched MeSH terms: Muscle Strength/drug effects
  5. Singh S, Prakash A, Kaur S, Ming LC, Mani V, Majeed AB
    Environ Toxicol, 2016 Aug;31(8):1017-26.
    PMID: 25864908 DOI: 10.1002/tox.22111
    Organophosphate pesticides are used in agriculture where they are associated with numerous cases of intentional and accidental misuse. These toxicants are potent inhibitors of cholinesterases leading to a massive build-up of acetylcholine which induces an array of deleterious effects, including convulsions, oxidative damage and neurobehavioral deficits. Antidotal therapies with atropine and oxime yield a remarkable survival rate, but fail to prevent neuronal damage and behavioral problems. It has been indicated that multifunction drug therapy with potassium channel openers, calcium channel antagonists and antioxidants (either single-agent therapy or combination therapy) may have the potential to prevent cell death and/or slow down the processes of secondary neuronal damage. The aim of the present study, therefore, was to make a relative assessment of the potential effects of nicorandil (2 mg/kg), clinidipine (10 mg/kg), and grape seed proanthocyanidin (GSPE) extract (200 mg/kg) individually against subacute chlorpyrifos induced toxicity. The test drugs were administered to Wistar rats 2 h after exposure to Chlorpyrifos (CPF). Different behavioral studies and biochemical estimation has been carried in the study. The results showed that chronic administration of CPF significantly impaired learning and memory, along with motor coordination, and produced a marked increase in oxidative stress along with significantly reduced acetylcholine esterase (AChE) activity. Treatment with nicorandil, clinidipine and GSPE was shown to significantly improve memory performance, attenuate oxidative damage and enhance AChE activity in rats. The present study also suggests that a combination of nicorandil, clinidipine, and GSPE has a better neuroprotective effect against subacute CPF induced neurotoxicity than if applied individually. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1017-1026, 2016.
    Matched MeSH terms: Muscle Strength/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links