Displaying all 5 publications

Abstract:
Sort:
  1. Teoh SL, Das S
    Curr Pharm Des, 2017;23(12):1845-1859.
    PMID: 28231756 DOI: 10.2174/1381612822666161027120043
    The incidence and mortality due to breast cancer is increasing worldwide. There is a constant quest to know the underlying molecular biology of breast cancer in order to arrive at diagnosis and plan better treatment options. MicroRNAs (miRNAs) are small non-coding and single stranded RNAs which influence the gene expression and physiological condition in any tumor. The miRNAs may act on different pathways in various cancers. Recently, there are research reports on various miRNAs being linked to breast cancers. The important miRNAs associated with breast cancers include miR-21, miR-155, miR-27a, miR-205, miR-145 and miR-320a. In the present review we discuss the role of miRNAs in breast cancer, its importance as diagnostic markers, prognosis and metastasis markers. We also highlight the role of miRNAs with regard to resistance to few anticancerous drugs such as Tamoxifen and Trastuzumab. The role of miRNA in resistance to treatment is one of the core issues discussed in the present review. Much information on the miRNA roles is available particularly in the neoadjuvant chemotherapy setting, because this protocol allows the rapid association of miRNA expression with the treatment response. This review opens the door for designing better therapeutic options in drug resistance cases in breast cancer.
    Matched MeSH terms: Neoplasm Metastasis/genetics*
  2. Lim JCW, Kwan YP, Tan MS, Teo MHY, Chiba S, Wahli W, et al.
    Int J Mol Sci, 2018 Sep 20;19(10).
    PMID: 30241392 DOI: 10.3390/ijms19102860
    BACKGROUND: Peroxisome proliferator⁻activated receptor (PPAR) β/δ, a ligand-activated transcription factor, is involved in diverse biological processes including cell proliferation, cell differentiation, inflammation and energy homeostasis. Besides its well-established roles in metabolic disorders, PPARβ/δ has been linked to carcinogenesis and was reported to inhibit melanoma cell proliferation, anchorage-dependent clonogenicity and ectopic xenograft tumorigenicity. However, PPARβ/δ's role in tumour progression and metastasis remains controversial.

    METHODS: In the present studies, the consequence of PPARβ/δ inhibition either by global genetic deletion or by a specific PPARβ/δ antagonist, 10h, on malignant transformation of melanoma cells and melanoma metastasis was examined using both in vitro and in vivo models.

    RESULTS: Our study showed that 10h promotes epithelial-mesenchymal transition (EMT), migration, adhesion, invasion and trans-endothelial migration of mouse melanoma B16/F10 cells. We further demonstrated an increased tumour cell extravasation in the lungs of wild-type mice subjected to 10h treatment and in Pparβ/δ-/- mice in an experimental mouse model of blood-borne pulmonary metastasis by tail vein injection. This observation was further supported by an increased tumour burden in the lungs of Pparβ/δ-/- mice as demonstrated in the same animal model.

    CONCLUSION: These results indicated a protective role of PPARβ/δ in melanoma progression and metastasis.

    Matched MeSH terms: Neoplasm Metastasis/genetics*
  3. Zhao Z, Malhotra A, Seng WY
    J Environ Pathol Toxicol Oncol, 2019;38(3):195-203.
    PMID: 31679307 DOI: 10.1615/JEnvironPatholToxicolOncol.2019029549
    UNCI 19 expression has been reported to be significantly higher in hepatic cancer cells (HCC). However, the clinical significance of modulating UNC119 expression in HCC is not well understood. The study described here aimed to explore the potential of curcumin in modulation of UNC119 expression in HCC by assessment with quantitative real-time PCR, western blot, and immune-histochemical analyses in HCC cell lines and tissues. The biological functions of UNC119 in the proliferation, growth, and cycle of tumor cells were analyzed both in vitro and in vivo. UNC119 expression was upregulated in HCC cell lines and tissues as indicated by comparison with normal liver cells and tissues. Cellular function assays showed that higher levels of UNC119 not only promoted proliferation but also enhanced HCC cell migration and invasion. UNC119 promoted progression of the cell cycle and significantly promoted HCC cell growth through the Wnt/β-catenin signal pathway, and enhanced tumor migration and invasion by the TGF-β/EMT pathway. Curcumin efficiently inhibited HCC cell proliferation by blocking the Wnt/β-catenin pathway and inhabited migration and invasion by blocking the TGF-p/EMT signal pathway. Curcumin not only was beneficial for tumor remission but also contributed to the long-term survival of HCC-bearing mice. UNC119 was significantly upregulated and promoted cell growth in hepatic cancer cells and tissues by the Wnt/β-catenin signal pathway and migration by TGF-β/EMT signal pathway. Curcumin treatment inhibited cell proliferation, growth, migration, and invasion by inhibition of those pathways.
    Matched MeSH terms: Neoplasm Metastasis/genetics*
  4. Ho CS, Yap SH, Phuah NH, In LL, Hasima N
    Lung Cancer, 2014 Feb;83(2):154-62.
    PMID: 24360396 DOI: 10.1016/j.lungcan.2013.11.024
    Dysregulation in miRNA expression contributes towards the initiation and progression of metastasis by regulating multiple target genes. In this study, variations in miRNA expression profiles were investigated between high and low invasive NSCLC cell lines followed by identification of miRNAs with targets governing NSCLC's metastatic potential.
    Matched MeSH terms: Neoplasm Metastasis/genetics
  5. Fahmy O, Khairul-Asri MG, Stenzl A, Gakis G
    Clin. Exp. Metastasis, 2016 10;33(7):629-35.
    PMID: 27380916 DOI: 10.1007/s10585-016-9807-9
    For many decades, no significant improvements could be achieved to prolong the survival in metastatic bladder cancer. Recently, systemic immunotherapy with checkpoint inhibitors (anti-PD-L1/anti-CTLA-4) has been introduced as a novel treatment modality for patients with metastatic bladder cancer. We conducted a systematic review according to the PRISMA statement for data published on the clinical efficacy of checkpoint inhibitors in metastatic bladder cancer. Clinical efficacy of anti PD-L1 therapy was investigated in prospective trials in a total of 155 patients. Patients with positive expression for PD-L1 tended towards better overall response rates (ORR) compared to those with negative expression (34/76 vs 10/73, 45 vs 14 %; p = 0.21). Among patients with PD-L1 positive tumors, those with non-visceral metastases exhibited significantly higher ORR compared to those with visceral metastases (82 vs 28 %; p = 0.001). For anti-CTLA4 therapy, there were no data retrievable on clinical efficacy. Although data on clinical efficacy of checkpoint inhibitors in metastatic bladder cancer are currently limited, the efficacy of these drugs might depend mainly on the metastatic volume and immune system integrity. Patients with PD-L1 positive tumors and non-visceral metastases seem to derive the highest benefit from therapy.
    Matched MeSH terms: Neoplasm Metastasis/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links