For many years, circular ribonucleic acids (circRNAs) have been counted as aberrant splicing by-products. Advanced bioinformatics analysis and deep sequencing techniques have allowed researchers to discover more interesting facts about circRNAs. Intriguing evidence has shed light on the functions of circRNAs in many tissues. Furthermore, emerging reports showed that circRNAs are found abundantly in saliva and blood samples, suggesting that circRNAs are potential clinical biomarkers for human embryonic development, diseases progression and prognosis, in addition to its role in organogenesis and pathogenesis. The implementation of circRNAs in human developmental stages and diseases would be a tremendous discovery in the science and medical field. Therefore, circRNAs have been studied for its biological function as well as its implication in various human diseases. The aim of this review is to highlight the importance of circRNAs in cardiac, respiratory, nervous, endocrine and digestive systems. In addition, the role and impact of circRNAs in, cardiogenesis, neurogenesis and cancer have been discussed.
Functional foods such as pomegranate, dates and honey were shown by various previous studies to individually have a neuroprotective effect, especially in neurodegenerative disease such as Alzheimer's disease (AD). In this novel and original study, an 1H NMR spectroscopy tool was used to identify the metabolic neuroprotective mechanism of commercially mixed functional foods (MFF) consisting of pomegranate, dates and honey, in rats injected with amyloid-beta 1-42 (Aβ-42). Forty-five male albino Wistar rats were randomly divided into five groups: NC (0.9% normal saline treatment + phosphate buffer solution (PBS) solution injection), Abeta (0.9% normal saline treatment + 0.2 µg/µL Aβ-42 injection), MFF (4 mL/kg MFF treatment + PBS solution injection), Abeta-MFF (4 mL/kg MFF treatment + 0.2 µg/µL Aβ-42 injection) and Abeta-NAC (150 mg/kg N-acetylcysteine + 0.2 µg/µL Aβ-42 injection). Based on the results, the MFF and NAC treatment improved the spatial memory and learning using Y-maze. In the metabolic analysis, a total of 12 metabolites were identified, for which levels changed significantly among the treatment groups. Systematic metabolic pathway analysis found that the MFF and NAC treatments provided a neuroprotective effect in Aβ-42 injected rats by improving the acid amino and energy metabolisms. Overall, this finding showed that MFF might serve as a potential neuroprotective functional food for the prevention of AD.