METHODS: In this article, we propose a new method based on simultaneous EEG-fMRI data and machine learning approach to classify the visual brain activity patterns. We acquired EEG-fMRI data simultaneously on the ten healthy human participants by showing them visual stimuli. Data fusion approach is used to merge EEG and fMRI data. Machine learning classifier is used for the classification purposes.
RESULTS: Results showed that superior classification performance has been achieved with simultaneous EEG-fMRI data as compared to the EEG and fMRI data standalone. This shows that multimodal approach improved the classification accuracy results as compared with other approaches reported in the literature.
CONCLUSIONS: The proposed simultaneous EEG-fMRI approach for classifying the brain activity patterns can be helpful to predict or fully decode the brain activity patterns.
OBJECTIVE: This study aims to conduct a comprehensive analysis of machine learning (ML) methods for MRI-based biomarker selection and classification to investigate early cognitive decline in AD. The focus to discriminate between classifying healthy control (HC) participants who remained stable and those who developed mild cognitive impairment (MCI) within five years (unstable HC or uHC).
METHODS: 3-Tesla (3T) MRI data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and Open Access Series of Imaging Studies 3 (OASIS-3) were used, focusing on HC and uHC groups. Freesurfer's recon-all and other tools were used to extract anatomical biomarkers from subcortical and cortical brain regions. ML techniques were applied for feature selection and classification, using the MATLAB Classification Learner (MCL) app for initial analysis, followed by advanced methods such as nested cross-validation and Bayesian optimization, which were evaluated within a Monte Carlo replication analysis as implemented in our customized pipeline. Additionally, polynomial regression-based data harmonization techniques were used to enhance ML and statistical analysis. In our study, ML classifiers were evaluated using performance metrics such as Accuracy (Acc), area under the receiver operating characteristic curve (AROC), F1-score, and a normalized Matthew's correlation coefficient (MCC').
RESULTS: Feature selection consistently identified biomarkers across ADNI and OASIS-3, with the entorhinal, hippocampus, lateral ventricle, and lateral orbitofrontal regions being the most affected. Classification results varied between balanced and imbalanced datasets and between ADNI and OASIS-3. For ADNI balanced datasets, the naíve Bayes model using z-score harmonization and ReliefF feature selection performed best (Acc = 69.17%, AROC = 77.73%, F1 = 69.21%, MCC' = 69.28%). For OASIS-3 balanced datasets, SVM with zscore-corrected data outperformed others (Acc = 66.58%, AROC = 72.01%, MCC' = 66.78%), while logistic regression had the best F1-score (66.68%). In imbalanced data, RUSBoost showed the strongest overall performance on ADNI (F1 = 50.60%, AROC = 81.54%) and OASIS-3 (MCC' = 63.31%). Support vector machine (SVM) excelled on ADNI in terms of Acc (82.93%) and MCC' (70.21%), while naïve Bayes performed best on OASIS-3 by F1 (42.54%) and AROC (70.33%).
CONCLUSION: Data harmonization significantly improved the consistency and performance of feature selection and ML classification, with z-score harmonization yielding the best results. This study also highlights the importance of nested cross-validation (CV) to control overfitting and the potential of a semi-automatic pipeline for early AD detection using MRI, with future applications integrating other neuroimaging data to enhance prediction.
OBJECTIVE: The aim of the study was to characterize the perfusion patterns on perfusion computed tomography (PCT) in patients with seizures masquerading as acute stroke.
METHODS: We conducted a study on patients with acute seizures as stroke mimics. The inclusion criteria for this study were patients (1) initially presenting with stroke-like symptoms but finally diagnosed to have seizures and (2) with PCT performed within 72 h of seizures. The PCT of seizure patients (n = 27) was compared with that of revascularized stroke patients (n = 20) as the control group.
RESULTS: Among the 27 patients with seizures as stroke mimics, 70.4% (n = 19) showed characteristic PCT findings compared with the revascularized stroke patients, which were as follows: (1) multi-territorial cortical hyperperfusion {(73.7% [14/19] vs. 0% [0/20], p = 0.002), sensitivity of 73.7%, negative predictive value (NPV) of 80%}, (2) involvement of the ipsilateral thalamus {(57.9% [11/19] vs. 0% [0/20], p = 0.007), sensitivity of 57.9%, NPV of 71.4%}, and (3) reduced perfusion time {(84.2% [16/19] vs. 0% [0/20], p = 0.001), sensitivity of 84.2%, NPV of 87%}. These 3 findings had 100% specificity and positive predictive value in predicting patients with acute seizures in comparison with reperfused stroke patients. Older age was strongly associated with abnormal perfusion changes (p = 0.038), with a mean age of 66.8 ± 14.5 years versus 49.2 ± 27.4 years (in seizure patients with normal perfusion scan).
CONCLUSIONS: PCT is a reliable tool to differentiate acute seizures from acute stroke in the emergency setting.