Displaying all 4 publications

Abstract:
Sort:
  1. Noah RM, Jais MR, Noh LM
    Malays J Pathol, 1994 Dec;16(2):157-60.
    PMID: 9053565
    Variable parameters in chemiluminescence assay, one of the methods used to assess the functional capacity of neutrophils, were evaluated for suitable adaptation locally. The use of pooled normal human serum as compared to single normal human serum in opsonizing particles for phagocytosis was found to exhibit lower chemiluminescence activity (reduction range of 30%-50%). A similar degree of depression was observed when the particles were opsonized using normal human serum in comparison to that using autologous serum. Different intensity of chemiluminescence was also noted when the opsonized particle used was the Oxford strain of Staphylococcus aureus (NCTC 6571) in contrast to a strain of Staphylococcus aureus isolated from a patient. The results obtained warrant clinicians to deliver appropriate samples as best they can when the chemiluminescence assay is requested.
    Matched MeSH terms: Neutrophils/physiology*
  2. Noah RM, Jais MR, Noh LM
    Med J Malaysia, 1995 Jun;50(2):136-40.
    PMID: 7565182
    Three different methods to measure the oxidative respiratory burst of neutrophils were performed. Of the three, the chemiluminescence technique was observed to be the most sensitive among them. The strong statistical correlation and an acceptable agreement between chemiluminescence with that of the killing assay provides evidence for using the chemiluminescence assay as an alternative method of detecting gross defects of neutrophil respiratory burst killing assays.
    Matched MeSH terms: Neutrophils/physiology*
  3. Sharma JN, Mohsin SS
    Exp Pathol, 1990;38(2):73-96.
    PMID: 1971600
    In recent years, numerous agents have been recognized as inflammatory mediators. In this review, however, we discuss only those having direct relevance to human inflammatory diseases These mediators are clinically important due to their proinflammatory properties such as vasodilatation, increased vascular permeability, pain and chemotaxis. They may lead to the fifth cardinal sign, loss of function in inflammatory diseases. Agonists and non-specific antagonists are used as pharmacological tools to investigate the inflammatory role of PGs, LTs, PAF, IL-1, histamine, complement, SP, PMN-leukocytes, and kallikrein-kininogen-kinin systems. Unfortunately, no compound is known which concurrently abolishes all actions and interactions of inflammatory mediators. Therefore it would be highly useful to promote efforts in developing selective and competitive antagonists against proinflammatory actions of these chemical mediators. This may help to a better understanding of the pathogenesis of inflammatory reactions, and it may also be useful for the therapy of inflammatory diseases.
    Matched MeSH terms: Neutrophils/physiology
  4. Loh LC, Lo WH, Kanabar V, O'Connor BJ
    Asian Pac J Allergy Immunol, 2006 Jun-Sep;24(2-3):153-60.
    PMID: 17136881
    To study the nature of endotoxin or lipopolysaccharide (LPS) induced inflammation, we developed a method of quantifying intracellular human neutrophil elastase (HNE) in lysed sputum polymorphs as a means to study the degranulation status of LPS-recruited neutrophils. Induced sputum, blood and exhaled nitric oxide (NO) were collected from 10 healthy non-atopic human subjects after inhaling a single 15 microg dose of Escherichia coil LPS in an open study. At 6 hours, LPS inhalation caused significant increase of sputum and blood neutrophils but without parallel increase in myeloperoxidase, HNE or interleukin-8 (IL-8) in sputum sol and blood, or exhaled NO. Intracellular HNE in lysed sputum polymorphs or purified blood neutrophils did not show any significant changes between inhaled LPS and saline, nor was there any appreciable change in percentage HNE release induced by N-Formyl-Met-Leu-Phe (fMLP) in vitro. We concluded that in healthy humans, the transient neutrophilic inflammation induced by a single dose of inhaled 15 microg LPS is mainly characterized by cell recruitment, not enhanced secretion of granular mediators or increased exhaled NO based on our experimental conditions.
    Matched MeSH terms: Neutrophils/physiology*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links