It is well established that plant phenolics elicit various biological activities, with positive effects on health. Palm oil production results in large volumes of aqueous by-products containing phenolics. In the present study, we describe the effects of oil palm phenolics (OPP) on several degenerative conditions using various animal models. OPP reduced blood pressure in a NO-deficient rat model, protected against ischaemia-induced cardiac arrhythmia in rats and reduced plaque formation in rabbits fed an atherogenic diet. In Nile rats, a spontaneous model of the metabolic syndrome and type 2 diabetes, OPP protected against multiple aspects of the syndrome and diabetes progression. In tumour-inoculated mice, OPP protected against cancer progression. Microarray studies on the tumours showed differential transcriptome profiles that suggest anti-tumour molecular mechanisms involved in OPP action. Thus, initial studies suggest that OPP may have potential against several chronic disease outcomes in mammals.
Catechin-rich oil palm (Elaeis guineensis) leaf extract (OPLE) has good cardiovascular and phytoestrogenic properties. The OPLE (0.5 g day(-1) ) was supplemented to young, healthy, adult human volunteers, and their cognitive learning abilities were compared to placebo-controlled groups (N = 15). Their short-term memories, spatial visualisations, processing speeds, and language skills, were assessed over 2 months by cognitive tests computer programs.
Oil palm (Elaeis guineensis) leaf extract (OPLE) possesses good ex vivo vasodilation and antioxidant properties. This study evaluated the catechin-rich OPLE antioxidant, antihypertensive, and cardiovascular effects in normal and nitric oxide (NO)-deficient hypertensive rats. OPLE was administered orally (500 mg/kg of body weight/day) to normotensive Wistar rats and N(ω)-nitro-L-arginine methyl ester (L-NAME)-induced NO-deficient hypertensive rats. OPLE significantly (P