Displaying all 3 publications

Abstract:
Sort:
  1. Ismai BS, Enoma AO, Cheah UB, Lum KY, Malik Z
    J Environ Sci Health B, 2002 Jul;37(4):355-64.
    PMID: 12081027
    Laboratory studies utilizing radioisotopic techniques were conducted to determine the adsorption, desorption, and mobility of endosulfan (6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6,9-methano-2,4,3-benzodioxanthiepin3-oxide) and methamidophos (O,S-dimethyl phosphorothioate) in sandy loam and clay soils of the Cameron Highlands and the Muda rice-growing area, respectively. High Freundlich adsorption distribution coefficients [Kads(f)] for endosulfan (6.74 and 18.75) and low values for methamidophos (0.40 and 0.98) were obtained in the sandy loam and clay soils, respectively. The observed Koc values for endosulfan were 350.85 (sandy loam) and 1143.19 (clay) while Koc values of 20.92 (sandy loam) and 59.63 (clay) were obtained for methamidophos. Log Kow of 0.40 and 1.25 were calculated for endosulfan as well as -1.96 and -1.21 for methamidophos in the sandy loam and clay soils, respectively. Desorption was common to both pesticides but the desorption capacity of methamidophos from each soil type far exceeded that of endosulfan. Soil thin layer chromatography (TLC) and column studies showed that while methamidophos was very mobile in both soils, endosulfan displayed zero mobility in clay soil.
    Matched MeSH terms: Organothiophosphorus Compounds/chemistry*
  2. Chai LK, Wong MH, Mohd-Tahir N, Hansen HC
    Chemosphere, 2010 Apr;79(4):434-40.
    PMID: 20189217 DOI: 10.1016/j.chemosphere.2010.01.046
    Acephate is poorly sorbed to soil, thus the risk of leaching to the aquatic environment is high if it is not quickly degraded. The effect of soil moisture, temperature, microbial activity and application rate on acephate degradation has been studied in three Malaysian soils to examine and identify critical variables determining its degradation and mineralization kinetics. First-order kinetics could be used to describe degradation in all cases (r(2)>0.91). Acephate degraded faster in air-dry (t((1/2)) 9-11 d) and field capacity (t((1/2)) 10-16d) soils than in the wet soils (t((1/2)) 32-77 d). The activation energy of degradation was in the range 17-28 kJ mol(-1) and significantly higher for the soil with higher pH and lower clay and iron oxide contents. Soil sterilization caused a 3- to 10-fold decrease in degradation rates compared to non-sterile soils (t((1/2)) 53-116 d) demonstrating that acephate degradation is mainly governed by microbial processes. At 5-fold increase in application rates (25 microg g(-1)), half-life increased slightly (t((1/2)) 13-19 d) or was unaffected. Half-life from acephate mineralization was similar to those from degradation but much longer at the 5-fold increase in acephate application rates (t((1/2)) 41-96 d) demonstrating that degradation of metabolites is rate limiting. Thus, application of acephate should be restricted or avoided during wet seasons with heavy rainfall and flooded soil as in paddy cultivation. Sandy soils with low microbial activity are more prone to acephate leaching than clay soils rich in humic matter.
    Matched MeSH terms: Organothiophosphorus Compounds/chemistry
  3. Chai LK, Mohd-Tahir N, Bruun Hansen HC
    Pest Manag Sci, 2009 Feb;65(2):189-96.
    PMID: 18979521 DOI: 10.1002/ps.1667
    High amounts of insecticides are often used in intensive tropical vegetable production systems. Their persistence and residues in vegetables and soils need to be studied to ensure food safety and environmental stability. The dissipation of acephate, chlorpyrifos, cypermethrin and their metabolites was studied in green mustard [Brassica juncea (L.) Coss.] and soils. Two treatments, Impact 75 (acephate) and Agent 505 (cypermethrin plus chlorpyrifos), were applied 4 times at weekly intervals.
    Matched MeSH terms: Organothiophosphorus Compounds/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links