Displaying all 6 publications

Abstract:
Sort:
  1. Foo KY, Hameed BH
    Adv Colloid Interface Sci, 2009 Nov 30;152(1-2):39-47.
    PMID: 19836724 DOI: 10.1016/j.cis.2009.09.005
    Concern about environmental protection has aroused over the years from a global viewpoint. To date, the ever-increasing importance of biomass as the energy and material resources has lately been accounted by the rising prices for the crude petroleum oil. Rice husk ash, the most appropriate representative of the high ash biomass waste, is currently obtaining sufficient attraction, owning to its wide usefulness and potentiality in environmental conservation. Confirming the assertion, this paper presents a state of the art review of the rice milling industry, its background studies, fundamental properties and industrial applications. Moreover, the key advance on the preparation of novel adsorbents, its major challenges together with the future expectation has been highlighted and discussed. Conclusively, the expanding of rice husk ash in the field of adsorption science represents a viable and powerful tool, leading to the superior improvement of pollution control and environmental preservation.
    Matched MeSH terms: Oryza/anatomy & histology*
  2. Feldman AB, Murchie EH, Leung H, Baraoidan M, Coe R, Yu SM, et al.
    PLoS One, 2014;9(4):e94947.
    PMID: 24760084 DOI: 10.1371/journal.pone.0094947
    A high leaf vein density is both an essential feature of C4 photosynthesis and a foundation trait to C4 evolution, ensuring the optimal proportion and proximity of mesophyll and bundle sheath cells for permitting the rapid exchange of photosynthates. Two rice mutant populations, a deletion mutant library with a cv. IR64 background (12,470 lines) and a T-DNA insertion mutant library with a cv. Tainung 67 background (10,830 lines), were screened for increases in vein density. A high throughput method with handheld microscopes was developed and its accuracy was supported by more rigorous microscopy analysis. Eight lines with significantly increased leaf vein densities were identified to be used as genetic stock for the global C4 Rice Consortium. The candidate population was shown to include both shared and independent mutations and so more than one gene controlled the high vein density phenotype. The high vein density trait was found to be linked to a narrow leaf width trait but the linkage was incomplete. The more genetically robust narrow leaf width trait was proposed to be used as a reliable phenotypic marker for finding high vein density variants in rice in future screens.
    Matched MeSH terms: Oryza/anatomy & histology*
  3. Calingacion M, Laborte A, Nelson A, Resurreccion A, Concepcion JC, Daygon VD, et al.
    PLoS One, 2014;9(1):e85106.
    PMID: 24454799 DOI: 10.1371/journal.pone.0085106
    With the ever-increasing global demand for high quality rice in both local production regions and with Western consumers, we have a strong desire to understand better the importance of the different traits that make up the quality of the rice grain and obtain a full picture of rice quality demographics. Rice is by no means a 'one size fits all' crop. Regional preferences are not only striking, they drive the market and hence are of major economic importance in any rice breeding / improvement strategy. In this analysis, we have engaged local experts across the world to perform a full assessment of all the major rice quality trait characteristics and importantly, to determine how these are combined in the most preferred varieties for each of their regions. Physical as well as biochemical characteristics have been monitored and this has resulted in the identification of no less than 18 quality trait combinations. This complexity immediately reveals the extent of the specificity of consumer preference. Nevertheless, further assessment of these combinations at the variety level reveals that several groups still comprise varieties which consumers can readily identify as being different. This emphasises the shortcomings in the current tools we have available to assess rice quality and raises the issue of how we might correct for this in the future. Only with additional tools and research will we be able to define directed strategies for rice breeding which are able to combine important agronomic features with the demands of local consumers for specific quality attributes and hence, design new, improved crop varieties which will be awarded success in the global market.
    Matched MeSH terms: Oryza/anatomy & histology
  4. Azizi P, Rafii MY, Mahmood M, Abdullah SN, Hanafi MM, Nejat N, et al.
    PLoS One, 2015;10(5):e0126188.
    PMID: 26001124 DOI: 10.1371/journal.pone.0126188
    The rice blast fungus Magnaporthe oryzae is a serious pathogen that jeopardises the world's most important food-security crop. Ten common Malaysian rice varieties were examined for their morphological, physiological and genomic responses to this rice blast pathogen. qPCR quantification was used to assess the growth of the pathogen population in resistant and susceptible rice varieties. The chlorophyll content and photosynthesis were also measured to further understand the disruptive effects that M. oryzae has on infected plants of these varieties. Real-time PCR was used to explore the differential expression of eight blast resistance genes among the ten local varieties. Blast disease has destructive effects on the growth of rice, and the findings of our study provide evidence that the Pikh, Pi9, Pi21, and Osw45 genes are involved in defence responses in the leaves of Malaysian rice at 31 h after inoculation with M. oryzae pathotype P7.2. Both the chlorophyll content and photosynthesis were reduced, but the levels of Pikh gene expression remained constant in susceptible varieties, with a developed pathogen population and mild or severe symptoms. The Pi9, Pi21, and Osw45 genes, however, were simultaneously upregulated in infected rice plants. Therefore, the presence of the Pikh, Pi9, Pi21, and Osw45 genes in the germplasm is useful for improving the resistance of rice varieties.
    Matched MeSH terms: Oryza/anatomy & histology
  5. Ramin M, Alimon AR, Panandam JM, Sijam K, Javanmard A, Abdullah N
    Pak J Biol Sci, 2008 Feb 15;11(4):583-8.
    PMID: 18817130
    The digestion and Volatile Fatty Acid (VFA) production from rice straw and oil palm fronds by cellulolytic bacteria isolated from the termite Coptotermes curvignathus were investigated. The bacteria were Acinetobacter strain Raminalimon, Enterobacter aerogenes strain Razmin C, Enterobacter cloacae strain Razmin B, Bacillus cereus strain Razmin A and Chryseobacterium kwangyangense strain Cb. Acinetobacter strain Raminalimon is an aerobic bacterium, while the other species are facultative anaerobes. There were significant differences (p<0.05) among the bacteria for Dry Matter (DM) lost and acetic acid production from rice straw and Acinetobacter strain Raminalimon showed the highest activity. The facultative bacteria C. kwangyangense strain Cb (cfu mL(-1) 231 x 10(-6), OD: 0.5), E. cloacae (cfu mL(-1) 68 x 10(-7), OD: 0.5) and E. aerogenes (cfu mL(-1) 33 x 10(-7), OD: 0.5) were used for digestion study with the rumen fluid microflora. The in vitro gas production technique was applied for the comparative study and the parameters measured were pH, gas (volume), dry matter lost, acetic acid, propionic acid and butyric acid concentrations. pH was not significantly (p<0.05) different among the five treatments. The bacterium C. kwangyangense strain Cb showed the highest activity (p<0.05) for DM lost, acetic acid, propionic acid and butyric acid production from rice straw when compared to the other bacterial activities. There was no significance (p<0.05) difference between the three bacteria for the dry matter lost of oil palm fronds but the production of Volatile Fatty Acids (VFA) was significantly (p<0.05) high in the treatment which was inoculated with C. kwangyangense strain Cb. The Gen Bank NCBI/EMBL accession numbers for the bacterial strains are EU332791, EU305608, EU305609, EU294508 and EU169201.
    Matched MeSH terms: Oryza/anatomy & histology
  6. Hakim MA, Juraimi AS, Hanafi MM, Ismail MR, Selamat A, Rafii MY, et al.
    Biomed Res Int, 2014;2014:208584.
    PMID: 24579076 DOI: 10.1155/2014/208584
    Five Malaysian rice (Oryza sativa L.) varieties, MR33, MR52, MR211, MR219, and MR232, were tested in pot culture under different salinity regimes for biochemical response, physiological activity, and grain yield. Three different levels of salt stresses, namely, 4, 8, and 12 dS m(-1), were used in a randomized complete block design with four replications under glass house conditions. The results revealed that the chlorophyll content, proline, sugar content, soluble protein, free amino acid, and yield per plant of all the genotypes were influenced by different salinity levels. The chlorophyll content was observed to decrease with salinity level but the proline increased with salinity levels in all varieties. Reducing sugar and total sugar increased up to 8 dS m(-1) and decreased up to 12 dS m(-1). Nonreducing sugar decreased with increasing the salinity levels in all varieties. Soluble protein and free amino acid also decreased with increasing salinity levels. Cortical cells of MR211 and MR232 did not show cell collapse up to 8 dS m(-1) salinity levels compared to susceptible checks (IR20 and BRRI dhan29). Therefore, considering all parameters, MR211 and MR232 showed better salinity tolerance among the tested varieties. Both cluster and principal component analyses depict the similar results.
    Matched MeSH terms: Oryza/anatomy & histology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links