A total of eight strains of lactic acid bacteria were isolated from water kefir grains and assessed for their in vitro α-glucosidase inhibitory activity. Lactobacillus mali K8 demonstrated significantly higher inhibition as compared to the other strains, thus was selected for in vitro probiotic potential characterization, antibiotic resistance, hemolytic activity and adaptation to pumpkin fruit puree. L. mali K8 demonstrated tolerance to pH 2.5 and resisted the damaging effects of bile salts, pepsin and pancreatin, comparable to that of Lactobacillus rhamnosus GG ATCC 53103 (reference strain). Lack of hemolytic activity and susceptibility to the five standard antibiotics indicated the safety of the K8 strain. This strain showed singular properties to be used as starters in the pumpkin fruit puree fermentation. These preliminary in vitro tests indicated the safety and functionality of the K8 strain and its potential as a probiotic candidate.
This study was conducted to ascertain the cytotoxicity effect of oil palm (Elaeis guineensis) kernel protein hydrolysates (OPKHs) produced from its protein isolate. A modified microplate titer WST-1 [2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium] assay was used to investigate the cytotoxicity of hydrolysates produced from protease and pepsin-pancreatin hydrolysis at various concentrations (0.1, 1, 10, 100 μg/ml and 1 mg/ml) using HepG2 cell model. Additionally, peptide stimulation test using OPKHs at 1 mg/ml was carried out to investigate whether OPKHs could serve as growth factor for HepG2 cells other than affecting its viability. As a result, oleic acid appeared to normalize the WST-1 readings of HepG2 cells treated with both hydrolysates at 1 mg/ml. The presence of amino acids in OPKHs could stimulate the growth and prolongs the viability of HepG2 cells. Both OPKHs were non-cytotoxic to HepG2 cells at all tested concentrations even at high concentrations. This study indicated that pepsin-pancreatin and protease hydrolysates produced from oil palm kernel protein were non-cytotoxic on HepG2 cells.
Gelatine obtained from fish skin has become a potential source of preparing nanoparticles and
encapsulation of bioactive compounds. Within these fish skin, gelatine nanoparticles show
potent benefits for application in pharmaceutical and cosmetic industry. The encapsulated
bioactive ingredients within nanoparticles have improved bioavailability, delivery properties,
and solubility of the nutraceuticals within the human body and blood stream. Many of such
bioactive peptides (biopeptides) are potent antioxidants; and as oxidative stress is the main
cause of the onset of various chronic diseases, encapsulation of antioxidant biopeptides within
fish gelatine nanoparticles could be a potential remedy to prevent or delay the onset of such
diseases and for better health prospects. The purpose of the present work was to prepare a
simple, safe, and reproducible novel food delivery nanoparticle system encapsulating a desirable antioxidant biopeptide. An optimisation study was conducted to produce a desirable size
of gelatine nanoparticles which showed a higher encapsulation efficiency of an antioxidant
biopeptide. Sunflower biopeptide was chosen as the antioxidant biopeptide, as the activity of
this protein hydrolysate is quite high at DPPH of 89% and FRAP assay of 968 µm/L. Tilapia
fish was used as gelatine source at an average yield of the process at 10% wt/wt. Effects of
parameters such as pH, biopeptide concentration, and cross-linking agent ‘glutaraldehyde’ on
the size, stability, and encapsulation efficiency on the nanoparticles were studied. The average
diameter of the biopeptide loaded gelatine nanoparticle was between 228.3 and 1,305 nm.
Encapsulation efficiency was 76% at an optimal pH of 2, glutaraldehyde concentration of 2
mL, and biopeptide concentration of 0.1 mg/mL exhibited DPPH at 92% and FRAP assay of
978 µm/L. To understand the absorption of sunflower biopeptide in stomach, blood stream,
and biopeptide release of the gelatine nanoparticles, biopeptide loaded gelatine nanoparticles
were subjected to simulated gastrointestinal conditions mimicking human stomach and
intestine; and showed peptide release of 0.1464 and 0.277 mg/mL upon pepsin and pancreatin
digestion, respectively.