Displaying all 5 publications

Abstract:
Sort:
  1. Chan YP, Chua KB, Koh CL, Lim ME, Lam SK
    J Gen Virol, 2001 Sep;82(Pt 9):2151-5.
    PMID: 11514724
    We have completely sequenced the genomes of two Nipah virus (NiV) isolates, one from the throat secretion and the other from the cerebrospinal fluid (CSF) of the sole surviving encephalitic patient with positive CSF virus isolation in Malaysia. The two genomes have 18246 nucleotides each and differ by only 4 nucleotides. The NiV genome is 12 nucleotides longer than the Hendra virus (HeV) genome and both genomes have identical leader and trailer sequence lengths and hexamer-phasing positions for all their genes. Both NiV and HeV are also very closely related with respect to their genomic end sequences, gene start and stop signals, P gene-editing signals and deduced amino acid sequences of nucleocapsid protein, phosphoprotein, matrix protein, fusion protein, glycoprotein and RNA polymerase. The existing evidence demonstrates a clear need for the creation of a new genus within the subfamily Paramyxovirinae to accommodate the close similarities between NiV and HeV and their significant differences from other members of the subfamily.
    Matched MeSH terms: Paramyxovirinae/classification*
  2. Pauly M, Pir JB, Loesch C, Sausy A, Snoeck CJ, Hübschen JM, et al.
    Appl Environ Microbiol, 2017 09 15;83(18).
    PMID: 28710271 DOI: 10.1128/AEM.01326-17
    Several infectious disease outbreaks with high mortality in humans have been attributed to viruses that are thought to have evolved from bat viruses. In this study from Luxembourg, the genetic diversity and epidemiology of paramyxoviruses and coronaviruses shed by the bat species Rhinolophus ferrumequinum and Myotis emarginatus were evaluated. Feces collection (n = 624) was performed longitudinally in a mixed-species colony in 2015 and 2016. In addition, feces (n = 254) were collected cross-sectionally from six Myotis emarginatus colonies in 2016. By use of degenerate primers in a nested format, overall prevalences of 1.1% (10/878) and 4.9% (43/878) were determined for paramyxoviruses and coronaviruses. Sequences of the partial RNA-dependent RNA polymerase and spike glycoprotein genes of coronaviruses, as well as sequences of the partial L gene of paramyxoviruses, were obtained. Novel paramyxovirus and Alphacoronavirus strains were identified in different Myotis emarginatus colonies, and severe acute respiratory syndrome (SARS)-related Betacoronavirus strains were shed by Rhinolophus ferrumequinum Logistic regression revealed that the level of Alphacoronavirus shedding was highest in July (odds ratio, 2.8; P < 0.01), probably due to periparturient stress. Phylogenetic analyses point to close virus-host coevolution, and the high genetic similarity of the study strains suggests that the Myotis emarginatus colonies in Luxembourg are socially connected. Most interestingly, we show that bats also host Betacoronavirus1 strains. The high similarity of the spike gene sequences of these viruses with mammalian Betacoronavirus 1 strains may be of concern. Both the SARS-related and Betacoronavirus 1 strains detected in bats in Luxembourg may cross the species barrier after a host adaptation process.IMPORTANCE Bats are a natural reservoir of a number of zoonotic pathogens. Several severe outbreaks in humans (e.g., a Nipah virus outbreak in Malaysia in 1998, and the almost global spread of severe acute respiratory syndrome in 2003) have been caused by bat-borne viruses that were transmitted to humans mostly after virus adaptation (e.g., in intermediate animal hosts). Despite the indigenousness of bat species that host viruses with suspected zoonotic potential and despite the zoonotic transmission of European bat 1 lyssavirus in Luxembourg, knowledge about the diversity and epidemiology of bat viruses remains limited in this country. Moreover, in contrast to other European countries, bat viruses are currently not included in the national surveillance activities of this land-locked country. We suggest that this gap in disease surveillance should be addressed, since we show here that synanthropic bats host viruses that may be able to cross the species barrier.
    Matched MeSH terms: Paramyxovirinae/classification
  3. Harcourt BH, Tamin A, Ksiazek TG, Rollin PE, Anderson LJ, Bellini WJ, et al.
    Virology, 2000 Jun 5;271(2):334-49.
    PMID: 10860887
    Recently, a new paramyxovirus, now known as Nipah virus (NV), emerged in Malaysia and Singapore, causing fatal encephalitis in humans and a respiratory syndrome in pigs. Initial studies had indicated that NV is antigenically and genetically related to Hendra virus (HV). We generated the sequences of the N, P/C/V, M, F, and G genes of NV and compared these sequences with those of HV and other members of the family Paramyxoviridae. The intergenic regions of NV were identical to those of HV, and the gene start and stop sequences of NV were nearly identical to those of HV. The open reading frames (ORFs) for the V and C proteins within the P gene were found in NV, but the ORF encoding a potential short basic protein found in the P gene of HV was not conserved in NV. The N, P, C, V, M, F, and G ORFs in NV have nucleotide homologies ranging from 88% to 70% and predicted amino acid homologies ranging from 92% to 67% in comparison with HV. The predicted fusion cleavage sequence of the F protein of NV had a single amino acid substitution (K to R) in comparison with HV. Phylogenetic analysis demonstrated that although HV and NV are closely related, they are clearly distinct from any of the established genera within the Paramyxoviridae and should be considered a new genus.
    Matched MeSH terms: Paramyxovirinae/classification
  4. Harcourt BH, Tamin A, Halpin K, Ksiazek TG, Rollin PE, Bellini WJ, et al.
    Virology, 2001 Aug 15;287(1):192-201.
    PMID: 11504554
    In 1998, Nipah virus (NV) emerged in peninsular Malaysia, causing fatal encephalitis in humans and a respiratory disease in swine. NV is most closely related to Hendra virus (HV), a paramyxovirus that was identified in Australia in 1994, and it has been proposed that HV and NV represent a new genus within the family Paramyxoviridae. This report describes the analysis of the sequences of the polymerase gene (L) and genomic termini of NV as well as a comparison of the full-length, genomic sequences of HV and NV. The L gene of NV is predicted to be 2244 amino acids in size and contains the six domains found within the L proteins of all nonsegmented, negative-stranded (NNS) RNA viruses. However, the GDNQ motif found in most NNS RNA viruses was replaced by GDNE in both NV and HV. The 3' and 5' termini of the NV genome are nearly identical to the genomic termini of HV and share sequence homology with the genomic termini of other members of the subfamily Paramyxovirinae. At 18,246 nucleotides, the genome of NV is 12 nucleotides longer than the genome of HV and they have the largest genomes within the family Paramyxoviridae. The comparison of the structures of the genomes of HV and NV is now complete and this information will help to establish the taxonomic position of these novel viruses within the family Paramyxoviridae.
    Matched MeSH terms: Paramyxovirinae/classification
  5. Chong HT, Kamarulzaman A, Tan CT, Goh KJ, Thayaparan T, Kunjapan SR, et al.
    Ann Neurol, 2001 Jun;49(6):810-3.
    PMID: 11409437
    Nipah virus, a newly identified paramyxovirus caused a severe outbreak of encephalitis in Malaysia with high fatalities. We report an open-label trial of ribavirin in 140 patients, with 54 patients who were managed prior to the availability of ribavirin or refused treatment as control. There were 45 deaths (32%) in the ribavirin arm; 29 deaths (54%) occurred in the control arm. This represents a 36% reduction in mortality (p = 0.011). There was no associated serious side effect. This study suggests that ribavirin is able to reduce the mortality of acute Nipah encephalitis.
    Matched MeSH terms: Paramyxovirinae/classification
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links