Displaying all 15 publications

Abstract:
Sort:
  1. T Thurai Rathnam J, Grigg MJ, Dini S, William T, Sakam SS, Cooper DJ, et al.
    Malar J, 2023 Feb 14;22(1):54.
    PMID: 36782162 DOI: 10.1186/s12936-023-04483-9
    BACKGROUND: The incidence of zoonotic Plasmodium knowlesi infections in humans is rising in Southeast Asia, leading to clinical studies to monitor the efficacy of anti-malarial treatments for knowlesi malaria. One of the key outcomes of anti-malarial drug efficacy is parasite clearance. For Plasmodium falciparum, parasite clearance is typically estimated using a two-stage method, that involves estimating parasite clearance for individual patients followed by pooling of individual estimates to derive population estimates. An alternative approach is Bayesian hierarchical modelling which simultaneously analyses all parasite-time patient profiles to determine parasite clearance. This study compared these methods for estimating parasite clearance in P. knowlesi treatment efficacy studies, with typically fewer parasite measurements per patient due to high susceptibility to anti-malarials.

    METHODS: Using parasite clearance data from 714 patients with knowlesi malaria and enrolled in three trials, the Worldwide Antimalarial Resistance Network (WWARN) Parasite Clearance Estimator (PCE) standard two-stage approach and Bayesian hierarchical modelling were compared. Both methods estimate the parasite clearance rate from a model that incorporates a lag phase, slope, and tail phase for the parasitaemia profiles.

    RESULTS: The standard two-stage approach successfully estimated the parasite clearance rate for 678 patients, with 36 (5%) patients excluded due to an insufficient number of available parasitaemia measurements. The Bayesian hierarchical estimation method was applied to the parasitaemia data of all 714 patients. Overall, the Bayesian method estimated a faster population mean parasite clearance (0.36/h, 95% credible interval [0.18, 0.65]) compared to the standard two-stage method (0.26/h, 95% confidence interval [0.11, 0.46]), with better model fits (compared visually). Artemisinin-based combination therapy (ACT) is more effective in treating P. knowlesi than chloroquine, as confirmed by both methods, with a mean estimated parasite clearance half-life of 2.5 and 3.6 h, respectively using the standard two-stage method, and 1.8 and 2.9 h using the Bayesian method.

    CONCLUSION: For clinical studies of P. knowlesi with frequent parasite measurements, the standard two-stage approach (WWARN's PCE) is recommended as this method is straightforward to implement. For studies with fewer parasite measurements per patient, the Bayesian approach should be considered. Regardless of method used, ACT is more efficacious than chloroquine, confirming the findings of the original trials.

    Matched MeSH terms: Parasitemia/drug therapy
  2. Hou LJ, Raju SS, Abdulah MS, Nor NM, Ravichandran M
    Jpn J Infect Dis, 2004 Oct;57(5):198-202.
    PMID: 15507775
    Chloroquine (CQ)-resistant Plasmodium falciparum appears to decrease CQ accumulation in its food vacuole by enhancing its efflux via an active membrane pump, which has been reported to be a P-glycoprotein-like transporter. Rifampicin (RIF) is a P-glycoprotein inhibitor and also has some antimalarial activity. It is hoped that a combination of choloroquine-rifampicin (CQ + RIF) would be advantageous in the treatment of CQ-resistant malaria. Swiss albino mice were inoculated with CQ-resistant P. berghei intraperitoneally, and studied for the effect of CQ versus the combination of CQ + RIF at various doses on the clearance of parasitemia, the survival of the mice, and the recrudescence of malaria. Paradoxically, RIF decreased the survival rate and rate of clearance of parasitemia and increased the rate of recrudescence significantly when combined with various doses of CQ. Our results indicated that RIF worsened the course of the disease, and we concluded that RIF should not be combined with CQ in the treatment of malaria.
    Matched MeSH terms: Parasitemia/drug therapy
  3. Zaid OI, Abd Majid R, Sidek HM, Noor SM, Abd Rachman-Isnadi MF, Bello RO, et al.
    Trop Biomed, 2020 Mar 01;37(1):29-49.
    PMID: 33612716
    Treatment Failure with chloroquine is one of the challenges that faced the dedicated efforts to eradicate malaria This study aims at investigating the impact of treatment failure with chloroquine on the progression of the disease-induced histo-pathogenic and immunogenic outcomes. To achieve this, Rane's protocol with modifications was applied on a model of Plasmodium berghei ANKA infected ICR mice to determine the dose response curve of chloroquine and to screen the treatment impact on the disease progression. Chloroquine was given at 1, 5, 10, 15 and 20 mg/kg once the parasitemia reached to 20-30% (the experimental initiation point). During the subsequent days, the mice were monitored for changes in the clinical signs, hematology parameters and the progress of the parasitemia until the parasitemia reached to 60-70% (the experimental termination point) or up to 10 days after chloroquine administration in case of achieving a complete eradication of the parasite. At the end, the mice were exsanguinated and their blood and organs were collected for the biochemistry and the histology study. A complete eradication of the parasite was achieved at 20 mg/kg while recrudescence was observed at the lower doses. At 1 mg/kg, the parasite growth was comparable to that of the positive control. The histo-pathogenic and immunogenic changes were stronger in the groups that experienced recrudescence (at 5 and 10 mg/kg). All in all, the study highlights the possibility of having a worsened clinical condition when chloroquine is given at its sub-therapeutic doses during malaria treatment.
    Matched MeSH terms: Parasitemia/drug therapy
  4. Poirot E, Skarbinski J, Sinclair D, Kachur SP, Slutsker L, Hwang J
    Cochrane Database Syst Rev, 2013 Dec 09;2013(12):CD008846.
    PMID: 24318836 DOI: 10.1002/14651858.CD008846.pub2
    BACKGROUND: Mass drug administration (MDA), defined as the empiric administration of a therapeutic antimalarial regimen to an entire population at the same time, has been a historic component of many malaria control and elimination programmes, but is not currently recommended. With renewed interest in MDA and its role in malaria elimination, this review aims to summarize the findings from existing research studies and program experiences of MDA strategies for reducing malaria burden and transmission.

    OBJECTIVES: To assess the impact of antimalarial MDA on population asexual parasitaemia prevalence, parasitaemia incidence, gametocytaemia prevalence, anaemia prevalence, mortality and MDA-associated adverse events.

    SEARCH METHODS: We searched the Cochrane Infectious Disease Group Specialized Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE+, EMBASE, to February 2013. We also searched CABS Abstracts, LILACS, reference lists, and recent conference proceedings.

    SELECTION CRITERIA: Cluster-randomized trials and non-randomized controlled studies comparing therapeutic MDA versus placebo or no MDA, and uncontrolled before-and-after studies comparing post-MDA to baseline data were selected. Studies administering intermittent preventive treatment (IPT) to sub-populations (for example, pregnant women, children or infants) were excluded.

    DATA COLLECTION AND ANALYSIS: Two authors independently reviewed studies for inclusion, extracted data and assessed risk of bias. Studies were stratified by study design and then subgrouped by endemicity, by co-administration of 8-aminoquinoline plus schizonticide drugs and by plasmodium species. The quality of evidence was assessed using the GRADE approach.

    MAIN RESULTS: Two cluster-randomized trials, eight non-randomized controlled studies and 22 uncontrolled before-and-after studies are included in this review. Twenty-two studies (29 comparisons) compared MDA to placebo or no intervention of which two comparisons were conducted in areas of low endemicity (≤5%), 12 in areas of moderate endemicity (6-39%) and 15 in areas of high endemicity (≥ 40%). Ten studies evaluated MDA plus other vector control measures. The studies used a wide variety of MDA regimens incorporating different drugs, dosages, timings and numbers of MDA rounds. Many of the studies are now more than 30 years old. Areas of low endemicity (≤5%)Within the first month post-MDA, a single uncontrolled before-and-after study conducted in 1955 on a small Taiwanese island reported a much lower prevalence of parasitaemia following a single course of chloroquine compared to baseline (1 study, very low quality evidence). This lower parasite prevalence was still present after more than 12 months (one study, very low quality evidence). In addition, one cluster-randomized trial evaluating MDA in a low endemic setting reported zero episodes of parasitaemia at baseline, and throughout five months of follow-up in both the control and intervention arms (one study, very low quality evidence). Areas of moderate endemicity (6-39%)Within the first month post-MDA, the prevalence of parasitaemia was much lower in three non-randomized controlled studies from Kenya and India in the 1950s (RR 0.03, 95% CI 0.01 to 0.08, three studies, moderate quality evidence), and in three uncontrolled before-and-after studies conducted between 1954 and 1961 (RR 0.29, 95% CI 0.17 to 0.48, three studies,low quality evidence).The longest follow-up in these settings was four to six months. At this time point, the prevalence of parasitaemia remained substantially lower than controls in the two non-randomized controlled studies (RR 0.18, 95% CI 0.10 to 0.33, two studies, low quality evidence). In contrast, the two uncontrolled before-and-after studies found mixed results: one found no difference and one found a substantially higher prevalence compared to baseline (not pooled, two studies, very low quality evidence). Areas of high endemicity (≥40%)Within the first month post-MDA, the single cluster-randomized trial from the Gambia in 1999 found no significant difference in parasite prevalence (one study, low quality evidence). However, prevalence was much lower during the MDA programmes in three non-randomized controlled studies conducted in the 1960s and 1970s (RR 0.17, 95% CI 0.11 to 0.27, three studies, moderate quality evidence), and within one month of MDA in four uncontrolled before-and-after studies (RR 0.37, 95% CI 0.28 to 0.49, four studies,low quality evidence).Four trials reported changes in prevalence beyond three months. In the Gambia, the single cluster-randomized trial found no difference at five months (one trial, moderate quality evidence). The three uncontrolled before-and-after studies had mixed findings with large studies from Palestine and Cambodia showing sustained reductions at four months and 12 months, respectively, and a small study from Malaysia showing no difference after four to six months of follow-up (three studies,low quality evidence). 8-aminoquinolines We found no studies directly comparing MDA regimens that included 8-aminoquinolines with regimens that did not. In a crude subgroup analysis with a limited number of studies, we were unable to detect any evidence of additional benefit of primaquine in moderate- and high-transmission settings. Plasmodium species In studies that reported species-specific outcomes, the same interventions resulted in a larger impact on Plasmodium falciparum compared to P. vivax.

    AUTHORS' CONCLUSIONS: MDA appears to reduce substantially the initial risk of malaria parasitaemia. However, few studies showed sustained impact beyond six months post-MDA, and those that did were conducted on small islands or in highland settings.To assess whether there is an impact of MDA on malaria transmission in the longer term requires more quasi experimental studies with the intention of elimination, especially in low- and moderate-transmission settings. These studies need to address any long-term outcomes, any potential barriers for community uptake, and contribution to the development of drug resistance.

    Matched MeSH terms: Parasitemia/drug therapy*
  5. Lee WC, Chin PW, Lau YL, Chin LC, Fong MY, Yap CJ, et al.
    Malar J, 2013;12:88.
    PMID: 23496970 DOI: 10.1186/1475-2875-12-88
    Plasmodium knowlesi is a potentially life-threatening zoonotic malaria parasite due to its relatively short erythrocytic cycle. Microscopic identification of P. knowlesi is difficult, with "compacted parasite cytoplasm" being one of the important identifying keys. This report is about a case of hyperparasitaemic human P. knowlesi infection (27% parasitaemia) with atypical amoeboid morphology. A peninsular Malaysian was admitted to the hospital with malaria. He suffered anaemia and acute kidney function impairment. Microscopic examination, assisted by nested PCR and sequencing confirmed as P. knowlesi infection. With anti-malarial treatment and several medical interventions, patient survived and recovered. One-month medical follow-up was performed after recovery and no recrudescence was noted. This case report highlights the extreme hyperparasitaemic setting, the atypical morphology of P. knowlesi in the patient's erythrocytes, as well as the medical interventions involved in this successfully treated case.
    Matched MeSH terms: Parasitemia/drug therapy
  6. Hakim SL, Vythilingam I, Marzukhi MI, Mak JW
    Trans R Soc Trop Med Hyg, 1995 11 1;89(6):686-9.
    PMID: 8594697
    The study compared the effectiveness of a single dose of diethylcarbamazine (DEC) (6mg/kg) with the standard regimen of 6 doses (total 36 mg/kg) in mass chemotherapy for the control of brugian filariasis. Mass chemotherapy with single-dose DEC was instituted in one area and standard dose in the other and treatment was repeated after one year. Parasitological surveys were conducted before, and 3, 7 and 12 months after treatment. Pretreatment characteristics were not significantly different between the 2 treatment areas. There was a significant reduction in microfilaraemia prevalence rate from 24.7% to 14.7% at 12 months and to 6.8% at 19 months in the single dose area and from 22.8% to 9.6% at 12 months and to 2.7% at 19 months with the standard dose. Maximum reduction was at 7 months after treatment with both regimens. There was also significant progressive reduction in mean microfilarial density from 4.39 +/- 20.37 to 0.89 +/- 4.16 per 60 microL in the single-dose area and from 4.43 +/- 17.31 to 0.75 +/- per 60 microL in the standard dose area. There was a greater reduction of both microfilarial prevalence and density using the standard regimen but it was not statistically significant. Thus, a single dose of DEC is as effective as the standard dose in controlling periodic brugian filariasis.
    Matched MeSH terms: Parasitemia/drug therapy
  7. Mohd Ridzuan MA, Ruenruetai U, Noor Rain A, Khozirah S, Zakiah I
    Trop Biomed, 2006 Dec;23(2):140-6.
    PMID: 17322815 MyJurnal
    Malaria is a disease which is still endemic and has become a disastrous scourge because of the emergence of antimalarial drug resistant Plasmodium falciparum. A new approach in addressing this is in developing a combination drug. This study is to show the enhancement of antimalarial properties, when single compound, goniothalamin combine with standard drug, chloroquine. Based on 4 Day Test, percentage of parasite growth on treated infected mice were determined. Oral treatment with 1 mg/kg BW of chloroquine on experimental mice suppressed 70% and 76.7% of both Plasmodium yoelii and Plasmodium berghei, respectively. The infection of P. berghei in mice was inhibited less than 50% by goniothalamin individual treatment at all doses in this study. About 27.8% and 18.5% inhibition of infection were observed in P. yoelii infected mice treated with 30 mg/kg and 60 mg/kg of goniothalamin respectively and the suppression exceed more than 50% at higher doses (90 and 120 mg/kg). Combination of 1 mg/kg chloroquine with either 30 mg/kg or 60 mg/kg of goniothalamin decreased the parasitemia of P. yoelii infected mice more than 90% and prolong the survival up to 100% after treatment. Similar treatment to P. berghei infected mice only shows about 60% reduction of parasitemia. The study findings showed that antimalarial property of goniothalamin was enhanced by combination with chloroquine at lower dose of each drug.
    Matched MeSH terms: Parasitemia/drug therapy
  8. Mohd Ridzuan MA, Sow A, Noor Rain A, Mohd Ilham A, Zakiah I
    Trop Biomed, 2007 Jun;24(1):111-8.
    PMID: 17568384 MyJurnal
    Eurycoma longifolia, locally known as 'Tongkat Ali' is a popular local medicinal plant that possess a lot of medicinal properties as claimed traditionally, especially in the treatment of malaria. The claims have been proven scientifically on isolated compounds from the plant. The present study is to investigate the anti malaria properties of Eurycoma longifolia standardized extract (root) (TA164) alone and in combination with artemisinin in vivo. Combination treatment of the standardized extract (TA164) with artemisinin suppressed P. yoelii infection in the experimental mice. The 4 day suppressive test showed that TA164 suppressed the parasitemia of P. yoelii-infected mice as dose dependent manner (10, 30 and 60 mg/kg BW) by oral and subcutaneous treatment. By oral administration, combination of TA164 at 10, 30 and 60 mg/kg BW each with artemisinin respectively showed a significant increase in the parasitemia suppression to 63, 67 and 80 percent as compared to artemisinin single treatment (31%). Using subcutaneous administration, at 10 mg/kg BW of TA164 in combination with 1.7 mg/kg BW of artemisinin gave a suppression of 80% of infection. This study showed that combination treatment of TA164 with artemisinin gives a promising potential anti malaria candidate using both oral and subcutaneous route, the later being the most potent.
    Matched MeSH terms: Parasitemia/drug therapy
  9. Daneshvar C, Davis TM, Cox-Singh J, Rafa'ee MZ, Zakaria SK, Divis PC, et al.
    Malar J, 2010;9:238.
    PMID: 20723228 DOI: 10.1186/1475-2875-9-238
    Plasmodium knowlesi is a cause of symptomatic and potentially fatal infections in humans. There are no studies assessing the detailed parasitological response to treatment of knowlesi malaria infections in man and whether antimalarial resistance occurs.
    Matched MeSH terms: Parasitemia/drug therapy
  10. Lokman Hakim S, Sharifah Roohi SW, Zurkurnai Y, Noor Rain A, Mansor SM, Palmer K, et al.
    Trans R Soc Trop Med Hyg, 1996 5 1;90(3):294-7.
    PMID: 8758083
    Uncomplicated falciparum malaria patients were randomly assigned to receive either 25 mg/kg chloroquine (CHL) over 3 d or a statim dose of 25 mg/kg sulfadoxine (SDX) plus 1.25 mg/kg pyrimethamine (PYR). Patients were followed up for 28 d and the parasite response graded according to World Health Organization criteria. Overall resistance to CHL was 63.3% and 47.4% to SDX/PYR. RI, RII and RIII rates were 9.1%, 42.4% and 12.1% for CHL and 10.5%, 21.1% and 15.8% for SDX/PYR, respectively. Degree and rates of resistance to CHL were significantly correlated with pre-treatment parasite density, but not those to SDX/PYR. Plasma CHL and SDX/PYR levels were within the reported ranges and were not significantly different in patients with sensitive and resistant responses.
    Matched MeSH terms: Parasitemia/drug therapy
  11. Basir R, Hasballah K, Jabbarzare M, Gam LH, Abdul Majid AM, Yam MF, et al.
    Trop Biomed, 2012 Sep;29(3):405-21.
    PMID: 23018504 MyJurnal
    The involvement of interleukin-18 (IL-18) and the effects of modulating its release on the course of malaria infection were investigated using Plasmodium berghei ANKA infection in ICR mice as a model. Results demonstrated that plasma IL-18 concentrations in malarial mice were significantly elevated and positively correlated with the percentage parasitaemia development. Significant expressions of IL-18 were also observed in the brain, spleen and liver tissues. Slower development of parasitaemia was observed significantly upon inhibition and neutralization of IL-18, whereas faster development of parasitaemia was recorded when the circulating levels of IL-18 were further augmented during the infection. Inhibition and neutralization of IL-18 production also resulted in a significant decrease of plasma concentrations of pro-inflammatory cytokines (TNFα, IFNγ, IL-1α and IL-6), whereas the anti-inflammatory cytokine, IL-10, was significantly increased. Augmenting the release of IL- 18 during the infection on the other hand resulted in the opposite. Early mortality in malarial mice was also observed when the circulating levels of IL-18 were further augmented. Results proved the important role of IL-18 in immune response against malaria and suggest that IL-8 is pro-inflammatory in nature and may involve in mediating the severity of the infection through a pathway of elevating the pro-inflammatory cytokine and limiting the release of anti-inflammatory cytokine.
    Matched MeSH terms: Parasitemia/drug therapy
  12. Nurul Aiezzah Z, Noor E, Hasidah MS
    Trop Biomed, 2010 Dec;27(3):624-31.
    PMID: 21399604 MyJurnal
    Malaria, caused by the Plasmodium parasite is still a health problem worldwide due to resistance of the pathogen to current anti-malarials. The search for new anti-malarial agents has become more crucial with the emergence of chloroquine-resistant Plasmodium falciparum strains. Protein kinases such as mitogen-activated protein kinase (MAPK), MAPK kinase, cyclin-dependent kinase (CDK) and glycogen synthase kinase- 3(GSK-3) of parasitic protozoa are potential drug targets. GSK-3 is an enzyme that plays a vital role in multiple cellular processes, and has been linked to pathogenesis of several diseases such as type II diabetes and Alzheimer's disease. In the present study, the antiplasmodial property of LiCl, a known GSK-3 inhibitor, was evaluated in vivo for its antimalarial effect against mice infected with Plasmodium berghei. Infected ICR mice were intraperitoneally administered with LiCl for four consecutive days before (prophylactic test) and after (suppressive test) inoculation of P. berghei-parasitised erythrocytes. Results from the suppressive test (post-infection LiCl treatment) showed inhibition of erythrocytic parasitemia development by 62.06%, 85.67% and 85.18% as compared to nontreated controls for the 100 mg/kg, 300 mg/kg and 600 mg/kg dosages respectively. Both 300 mg/kg and 600 mg/kg LiCl showed similar significant (P<0.05) suppressive values to that obtained with chloroquine-treated mice (86% suppression). The prophylactic test indicated a significantly (P<0.05) high protective effect on mice pre-treated with LiCl with suppression levels relatively comparable to chloroquine (84.07% and 86.26% suppression for the 300 mg/kg and 600 mg/kg LiCl dosages respectively versus 92.86% suppression by chloroquine). In both the suppressive and prophylactic tests, LiCl-treated animals survived longer than their non-treated counterparts. Mortality of the non-treated mice was 100% within 6 to 7 days of parasite inoculation whereas mice administered with LiCl survived beyond 9 days. Healthy non-infected mice administered with 600 mg/ kg LiCl for four consecutive days also showed decreased mortality compared to animals receiving lower doses of LiCl; three of the seven mice intraperitoneally injected with the former dose of LiCl did not survive more than 24 h after administration of LiCl whereas animals given the lower LiCl doses survived beyond four days of LiCl administration. To date, no direct evidence of anti-malarial activity in vivo or in vitro has been reported for LiCl. Evidence of anti-plasmodial activity of lithium in a mouse infection model is presented in this study.
    Matched MeSH terms: Parasitemia/drug therapy*
  13. Odedra A, Webb L, Marquart L, Britton LJ, Chalon S, Moehrle JJ, et al.
    Am J Trop Med Hyg, 2020 11;103(5):1910-1917.
    PMID: 32815508 DOI: 10.4269/ajtmh.20-0491
    Liver transaminase elevations after treatment in malaria volunteer infection studies (VISs) have raised safety concerns. We investigated transaminase elevations from two human Plasmodium vivax VISs where subjects were treated with chloroquine (n = 24) or artefenomel (n = 8) and compared them with studies in Thailand (n = 41) and Malaysia (n = 76). In the VISs, alanine transaminase (ALT) increased to ≥ 2.5 × upper limit of normal (ULN) in 11/32 (34%) volunteers, peaking 5-8 days post-treatment. Transaminase elevations were asymptomatic, were not associated with elevated bilirubin, and resolved by day 42. The risk of an ALT ≥ 2.5 × ULN increased more than 4-fold (odds ratio [OR] 4.28; 95% CI: 1.26-14.59; P = 0.02) for every log10 increase in the parasite clearance burden (PCB), defined as the log-fold reduction in parasitemia 24 hours post-treatment. Although an elevated ALT ≥ 2.5 × ULN was more common after artefenomel than after chloroquine (5/8 [63%] versus 6/24 [25%]; OR 5.0; 95% CI: 0.91-27.47; P = 0.06), this risk disappeared when corrected for PCB. Peak ALT also correlated with peak C-reactive protein (R = 0.44; P = 0.012). Elevations in ALT (≥ 2.5 × ULN) were less common in malaria-endemic settings, occurring in 1/41 (2.5%) Thai patients treated with artefenomel, and in none of 76 Malaysians treated with chloroquine or artemisinin combination therapy. Post-treatment transaminase elevations are common in experimental P. vivax infection but do not appear to impact on participant safety. Although the mechanism of these changes remains uncertain, host inflammatory response to parasite clearance may be contributory.
    Matched MeSH terms: Parasitemia/drug therapy
  14. Barber BE, William T, Grigg MJ, Menon J, Auburn S, Marfurt J, et al.
    Clin Infect Dis, 2013 Feb;56(3):383-97.
    PMID: 23087389 DOI: 10.1093/cid/cis902
    Plasmodium knowlesi commonly causes severe malaria in Malaysian Borneo, with high case-fatality rates reported. We compared risk, spectrum, and outcome of severe disease from P. knowlesi, Plasmodium falciparum, and Plasmodium vivax and outcomes following introduction of protocols for early referral and intravenous artesunate for all severe malaria.
    Matched MeSH terms: Parasitemia/drug therapy
  15. Daneshvar C, Davis TM, Cox-Singh J, Rafa'ee MZ, Zakaria SK, Divis PC, et al.
    Clin Infect Dis, 2009 Sep 15;49(6):852-60.
    PMID: 19635025 DOI: 10.1086/605439
    BACKGROUND: Plasmodium knowlesi is increasingly recognized as a cause of human malaria in Southeast Asia but there are no detailed prospective clinical studies of naturally acquired infections.

    METHODS: In a systematic study of the presentation and course of patients with acute P. knowlesi infection, clinical and laboratory data were collected from previously untreated, nonpregnant adults admitted to the hospital with polymerase chain reaction-confirmed acute malaria at Kapit Hospital (Sarawak, Malaysia) from July 2006 through February 2008.

    RESULTS: Of 152 patients recruited, 107 (70%) had P. knowlesi infection, 24 (16%) had Plasmodium falciparum infection, and 21 (14%) had Plasmodium vivax. Patients with P. knowlesi infection presented with a nonspecific febrile illness, had a baseline median parasitemia value at hospital admission of 1387 parasites/microL (interquartile range, 6-222,570 parasites/microL), and all were thrombocytopenic at hospital admission or on the following day. Most (93.5%) of the patients with P. knowlesi infection had uncomplicated malaria that responded to chloroquine and primaquine treatment. Based on World Health Organization criteria for falciparum malaria, 7 patients with P. knowlesi infection (6.5%) had severe infections at hospital admission. The most frequent complication was respiratory distress, which was present at hospital admission in 4 patients and developed after admission in an additional 3 patients. P. knowlesi parasitemia at hospital admission was an independent determinant of respiratory distress, as were serum creatinine level, serum bilirubin, and platelet count at admission (p < .002 for each). Two patients with knowlesi malaria died, representing a case fatality rate of 1.8% (95% confidence interval, 0.2%-6.6%).

    CONCLUSIONS: Knowlesi malaria causes a wide spectrum of disease. Most cases are uncomplicated and respond promptly to treatment, but approximately 1 in 10 patients develop potentially fatal complications.

    Matched MeSH terms: Parasitemia/drug therapy
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links