OBJECTIVE: The purpose of this study was to determine the organophosphorus pesticide urinary metabolite levels and its predictors among Orang Asli children of the Mah Meri tribe living in an agricultural island in Kuala Langat, Selangor.
METHODS: Data collection was carried out at an island in Kuala Langat, Selangor, where a total of 180 Orang Asli children of the Mah Meri tribe voluntarily participated in the study. Data were collected via a validated, modified questionnaire. Urinary organophosphate metabolites, namely dimethylphosphate, diethylphosphate, dimethylthiophosphate, dimethyldithiophosphate, diethylthiophosphate, and diethyldithiophosphate were measured to assess organophosphate pesticide exposure in children.
FINDINGS: Eighty-four (46.7%) of the respondents were positive for urine dialkyl phosphate metabolites. In multivariable analysis, children who frequently consumed apples had 4 times higher risk of pesticide detection than those who consumed apple less frequently. In addition, those who frequently ate cucumbers had 4 times higher risk for pesticide detection than those who ate cucumbers less frequently. Children with a father whose occupation involved high exposure to pesticides (agriculture) had 3 times higher risk of pesticide detection than those with a father in a low-risk occupation (nonagriculture).
CONCLUSIONS: Almost half of the children (46.7%) in the study area tested positive for urinary dialkyl phosphate metabolite levels. Most of the metabolite levels were equal to or higher than that reported in other previous studies. Major factors associated with pesticide detection in children in this study were frequent intake of apple and cucumber and fathers who are working in an agricultural area.
METHODS: A cross-sectional study was conducted among male farmers from 3 different communities in Sabah, Malaysia. A total of 152 farmers participated in this study of whom 62 farmers had been exposed to either paraquat or malathion or both to varying extents. Questionnaires were designed to record a history of pesticides exposure and other potential risk factors among farmers. All semen samples were collected, processed and analyzed by qualified personnel based on WHO guidelines. Volume, pH, sperm concentration, motility, morphology and WBC count were examined and recorded. The association between pesticide exposure and semen parameters was highly significant.
RESULTS: The mean values of volume, pH, sperm concentration, motility, and WBC count were significantly less in the exposed group than in compared with the non-exposed group, with p<0.005. Those who were exposed to pesticides had greater risk of having abnormal semen parameters than those in with the non exposed group, with p values of less than 0.05. The comparison between semen qualities such as lower sperm count, motility and higher percentage of sperm abnormality of those exposed to different types of pesticides (paraquat and malathion) showed no significant differences.
CONCLUSION: The results showed a significant decline in semen quality with a decline in sperm count, motility and higher percent of teratospermia among subjects with pesticide exposure, and those who were exposed to pesticides had significantly 3 to 9 times greater risk of having abnormal semen parameters.