Displaying all 5 publications

Abstract:
Sort:
  1. Lim PK, Ng SC, Lovell NH, Yu YP, Tan MP, McCombie D, et al.
    Physiol Meas, 2018 10 11;39(10):105005.
    PMID: 30183675 DOI: 10.1088/1361-6579/aadf1e
    OBJECTIVE: The photoplethysmography (PPG) signal, commonly used in the healthcare settings, is easily affected by movement artefact leading to errors in the extracted heart rate and SpO2 estimates. This study aims to develop an online artefact detection system based on adaptive (dynamic) template matching, suitable for continuous PPG monitoring during daily living activities or in the intensive care units (ICUs).

    APPROACH: Several master templates are initially generated by applying principal component analysis to data obtained from the PhysioNet MIMIC II database. The master template is then updated with each incoming clean PPG pulse. The correlation coefficient is used to classify the PPG pulse into either good or bad quality categories. The performance of our algorithm was evaluated using data obtained from two different sources: (i) our own data collected from 19 healthy subjects using the wearable Sotera Visi Mobile system (Sotera Wireless Inc.) as they performed various movement types; and (ii) ICU data provided by the PhysioNet MIMIC II database. The developed algorithm was evaluated against a manually annotated 'gold standard' (GS).

    MAIN RESULTS: Our algorithm achieved an overall accuracy of 91.5%  ±  2.9%, with a sensitivity of 94.1%  ±  2.7% and a specificity of 89.7%  ±  5.1%, when tested on our own data. When applying the algorithm to data from the PhysioNet MIMIC II database, it achieved an accuracy of 98.0%, with a sensitivity and specificity of 99.0% and 96.1%, respectively.

    SIGNIFICANCE: The proposed method is simple and robust against individual variations in the PPG characteristics, thus making it suitable for a diverse range of datasets. Integration of the proposed artefact detection technique into remote monitoring devices could enhance reliability of the PPG-derived physiological parameters.

    Matched MeSH terms: Photoplethysmography/methods*
  2. Gan KB, Zahedi E, Mohd Ali MA
    IEEE Trans Biomed Eng, 2009 Aug;56(8):2075-82.
    PMID: 19403354 DOI: 10.1109/TBME.2009.2021578
    In obstetrics, fetal heart rate (FHR) detection remains the standard for intrapartum assessment of fetal well-being. In this paper, a low-power (< 55 mW) optical technique is proposed for transabdominal FHR detection using near-infrared photoplesthysmography (PPG). A beam of IR-LED (890 nm) propagates through to the maternal abdomen and fetal tissues, resulting in a mixed signal detected by a low-noise detector situated at a distance of 4 cm. Low-noise amplification and 24-bit analog-to-digital converter resolution ensure minimum effect of quantization noise. After synchronous detection, the mixed signal is processed by an adaptive filter to extract the fetal signal, whereas the PPG from the mother's index finger is the reference input. A total of 24 datasets were acquired from six subjects at 37 +/- 2 gestational weeks. Results show a correlation coefficient of 0.96 (p-value < 0.001) between the proposed optical and ultrasound FHR, with a maximum error of 4%. Assessment of the effect of probe position on detection accuracy indicates that the probe should be close to fetal tissues, but not necessarily restricted to head or buttocks.
    Matched MeSH terms: Photoplethysmography/methods
  3. Mahri N, Gan KB, Meswari R, Jaafar MH, Mohd Ali MA
    J Med Eng Technol, 2017 May;41(4):298-308.
    PMID: 28351231 DOI: 10.1080/03091902.2017.1299229
    Myocardial infarction (MI) is a common disease that causes morbidity and mortality. The current tools for diagnosing this disease are improving, but still have some limitations. This study utilised the second derivative of photoplethysmography (SDPPG) features to distinguish MI patients from healthy control subjects. The features include amplitude-derived SDPPG features (pulse height, ratio, jerk) and interval-derived SDPPG features (intervals and relative crest time (RCT)). We evaluated 32 MI patients at Pusat Perubatan Universiti Kebangsaan Malaysia and 32 control subjects (all ages 37-87 years). Statistical analysis revealed that the mean amplitude-derived SDPPG features were higher in MI patients than in control subjects. In contrast, the mean interval-derived SDPPG features were lower in MI patients than in the controls. The classifier model of binary logistic regression (Model 7), showed that the combination of SDPPG features that include the pulse height (d-wave), the intervals of "ab", "ad", "bc", "bd", and "be", and the RCT of "ad/aa" could be used to classify MI patients with 90.6% accuracy, 93.9% sensitivity and 87.5% specificity at a cut-off value of 0.5 compared with the single features model.
    Matched MeSH terms: Photoplethysmography/methods*
  4. Zahedi E, Sohani V, Ali MA, Chellappan K, Beng GK
    J Healthc Eng, 2015;6(1):121-44.
    PMID: 25708380 DOI: 10.1260/2040-2295.6.1.121
    The feasibility of a novel system to reliably estimate the normalized central blood pressure (CBPN) from the radial photoplethysmogram (PPG) is investigated. Right-wrist radial blood pressure and left-wrist PPG were simultaneously recorded in five different days. An industry-standard applanation tonometer was employed for recording radial blood pressure. The CBP waveform was amplitude-normalized to determine CBPN. A total of fifteen second-order autoregressive models with exogenous input were investigated using system identification techniques. Among these 15 models, the model producing the lowest coefficient of variation (CV) of the fitness during the five days was selected as the reference model. Results show that the proposed model is able to faithfully reproduce CBPN (mean fitness = 85.2% ± 2.5%) from the radial PPG for all 15 segments during the five recording days. The low CV value of 3.35% suggests a stable model valid for different recording days.
    Matched MeSH terms: Photoplethysmography/methods*
  5. Shariati NH, Zahedi E, Jajai HM
    Physiol Meas, 2008 Mar;29(3):365-74.
    PMID: 18367811 DOI: 10.1088/0967-3334/29/3/007
    Bilateral PPG signals have been used for comparative study of two groups of healthy (free from any cardiovascular risk factors) and diabetic (as cardiovascular disease risk group) subjects in the age-matched range 40-50 years. The peripheral blood pulsations were recorded simultaneously from right and left index fingers for 90 s. Pulses have been modeled with the ARX440 model in the interval of 300 sample points with 100 sample points overlap between segments. Model parameters of three segments based on the highest fitness (higher than 80%) of modeled segments were retained for each subject. Subsequently, principal component analysis (PCA) was applied to the parameters of retained segments to eliminate the existing correlation among parameters and provide uncorrelated variables. The first principal component (contains 78.2% variance of data) was significantly greater in diabetic than in control groups (P < 0.0001, 0.74 +/- 2.01 versus -0.53 +/- 1.66). In addition the seventh principal component, which contains 0.02% of the data variance, was significantly lower in diabetic than in control groups (P < 0.05, -0.007 +/- 0.03 versus 0.005 +/- 0.03). Finally, linear discrimination analysis (LDA) was used to classify the subjects. The classification was done using the robust leaving-one-subject-out method. LDA could classify the subjects with 71.7% sensitivity and 70.2% specificity while the male subjects resulted in a highly acceptable result for the sensitivity (81%). The present study showed that PPG signals can be used for vascular function assessment and may find further application for detection of vascular changes before onset of clinical diseases.
    Matched MeSH terms: Photoplethysmography/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links