Displaying all 3 publications

Abstract:
Sort:
  1. Moghaddam AB, Moniri M, Azizi S, Rahim RA, Ariff AB, Saad WZ, et al.
    Molecules, 2017 May 24;22(6).
    PMID: 28538674 DOI: 10.3390/molecules22060872
    The potential ability of a new yeast strain, Pichia kudriavzevii, in the synthesis of zinc oxide nanoparticles (ZnO-NPs) through a green method was explored in this study. The effect of reaction time (12, 24 and 36 h) on the structure of the resulting ZnO nanoparticles was investigated. From the XRD and TEM results, the ZnO-NPs with a hexagonal wurtzite structure and a particle crystal size of ~10-61 nm was formed at different reaction times. Combing XRD, TEM, and PL results, it was revealed that the sample prepared at intermediate duration (24 h) has the most favorable nanosized structure with the lowest defect concentration. The biomedical properties of ZnO-NPs as free radical scavenging activity, cytotoxicity and antibacterial agents were characterized. Biosynthesized ZnO-NPs showed strong DPPH free radical scavenging and a dose dependent toxicity with non-toxic effects on Vero cells for concentrations below 190 µg/mL. Desirable bactericidal activity was shown by the ZnO-NPs on Gram-positive bacteria (Bacillus subtilis, Staphylococcus epidermidis and Staphylococcus aurous) and Gram-negative bacteria (Escherichia coli and Serratia marcescens). A maximum inhibition zone of ~19 mm was observed for Staphylococcus epidermidis at a concentration of 100 µg/mL for sample prepared at 24 h. The results from this study reveal that ZnO-NPs possesses potential for many medical and industrial applications.
    Matched MeSH terms: Pichia/drug effects*
  2. Xin J, Wan Mahtar WNA, Siah PC, Miswan N, Khoo BY
    Mol Med Rep, 2019 Jun;19(6):5368-5376.
    PMID: 31059050 DOI: 10.3892/mmr.2019.10201
    Cancer chemotherapy possesses high toxicity, particularly when a higher concentration of drugs is administered to patients. Therefore, searching for more effective compounds to reduce the toxicity of treatments, while still producing similar effects as current chemotherapy regimens, is required. Currently, the search for potential anticancer agents involves a random, inaccurate process with strategic deficits and a lack of specific targets. For this reason, the initial in vitro high‑throughput steps in the screening process should be reviewed for rapid identification of the compounds that may serve as anticancer agents. The present study aimed to investigate the potential use of the Pichia pastoris strain SMD1168H expressing DNA topoisomerase I (SMD1168H‑TOPOI) in a yeast‑based assay for screening potential anticancer agents. The cell density that indicated the growth of the recombinant yeast without treatment was first measured by spectrophotometry. Subsequently, the effects of glutamate (agonist) and camptothecin (antagonist) on the recombinant yeast cell density were investigated using the same approach, and finally, the effect of camptothecin on various cell lines was determined and compared with its effect on recombinant yeast. The current study demonstrated that growth was enhanced in SMD1168H‑TOPOI as compared with that in SMD1168H. Glutamate also enhanced the growth of the SMD1168H; however, the growth effect was not enhanced in SMD1168H‑TOPOI treated with glutamate. By contrast, camptothecin caused only lower cell density and growth throughout the treatment of SMD1168H‑TOPOI. The findings of the current study indicated that SMD1168H‑TOPOI has similar characteristics to MDA‑MB‑231 cells; therefore, it can be used in a yeast‑based assay to screen for more effective compounds that may inhibit the growth of highly metastatic breast cancer cells.
    Matched MeSH terms: Pichia/drug effects*
  3. Oslan SN, Salleh AB, Rahman RN, Basri M, Chor AL
    Acta Biochim. Pol., 2012;59(2):225-9.
    PMID: 22577620
    Yeasts are a convenient platform for many applications. They have been widely used as the expression hosts. There is a need to have a new yeast expression system to contribute the molecular cloning demands. Eight yeast isolates were screened from various environment sources and identified through ribosomal DNA (rDNA) Internal Transcribed Spacer (ITS). Full sequence of the rDNA ITS region for each isolate was BLASTed and phylogenetic study was constructed by using MEGA4. Among the isolates, isolate WB from 'ragi' (used to ferment carbohydrates) could be identified as a new species in order Saccharomycetales according to rDNA ITS region, morphology and biochemical tests. Isolate SO (from spoiled orange), RT (rotten tomato) and RG (different type of 'ragi') were identified as Pichia sp. Isolates R1 and R2, S4 and S5 (from the surrounding of a guava tree) were identified as Issatchenkia sp. and Hanseniaspora sp., respectively. Geneticin, 50 µg/mL, was determined to be the antibiotic marker for all isolates excepted for isolates RT and SO which used 500 µg/mL and 100 µg/mL Zeocin, respectively. Intra-extracellular proteins were screened for lipolytic activity at 30°C and 70°C. Thermostable lipase activity was detected in isolates RT and R1 with 0.6 U/mg and 0.1 U/mg, respectively. In conclusion, a new yeast-vector system for isolate WB can be developed by using phleomycin or geneticin as the drugs resistance marker. Moreover, strains RT and R1 can be investigated as a novel source of a thermostable lipase.
    Matched MeSH terms: Pichia/drug effects
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links