Displaying all 2 publications

Abstract:
Sort:
  1. Kanthan SR, Kavitha G, Addi S, Choon DS, Kamarul T
    Injury, 2011 Aug;42(8):782-9.
    PMID: 21329922 DOI: 10.1016/j.injury.2011.01.015
    The use of bone grafts in treating non- or delayed unions as the result of large bone loss is well established. However, despite good outcomes, the time to achieve complete union is still considerably long. To overcome this problem, the use of platelet-rich plasma (PRP) has been advocated albeit with varying success. To determine the true effectiveness of PRP in treating non-/delayed unions, a study was conducted using (n=12) rabbit models.
    Matched MeSH terms: Platelet-Rich Plasma/physiology*
  2. Mazlyzam AL, Aminuddin BS, Fuzina NH, Norhayati MM, Fauziah O, Isa MR, et al.
    Burns, 2007 May;33(3):355-63.
    PMID: 17321690
    Our aim of this study was to develop a new methodology for constructing a bilayer human skin equivalent to create a more clinical compliance skin graft composite for the treatment of various skin defects. We utilized human plasma derived fibrin as the scaffold for the development of a living bilayer human skin equivalent: fibrin-fibroblast and fibrin-keratinocyte (B-FF/FK SE). Skin cells from six consented patients were culture-expanded to passage 1. For B-FF/FK SE formation, human fibroblasts were embedded in human fibrin matrix and subsequently another layer of human keratinocytes in human fibrin matrix was stacked on top. The B-FF/FK SE was then transplanted to athymic mice model for 4 weeks to evaluate its regeneration and clinical performance. The in vivo B-FF/FK SE has similar properties as native human skin by histological analysis and expression of basal Keratin 14 gene in the epidermal layer and Collagen type I gene in the dermal layer. Electron microscopy analysis of in vivo B-FF/FK SE showed well-formed and continuous epidermal-dermal junction. We have successfully developed a technique to engineer living bilayer human skin equivalent using human fibrin matrix. The utilization of culture-expanded human skin cells and fibrin matrix from human blood will allow a fully autologous human skin equivalent construction.
    Matched MeSH terms: Plasma/physiology*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links