Displaying all 2 publications

Abstract:
Sort:
  1. Srivastava S, Dashora K, Ameta KL, Singh NP, El-Enshasy HA, Pagano MC, et al.
    Phytother Res, 2021 Jan;35(1):256-277.
    PMID: 32940412 DOI: 10.1002/ptr.6823
    There has been a spurt in the spread of microbial resistance to antibiotics due to indiscriminate use of antimicrobial agents in human medicine, agriculture, and animal husbandry. It has been realized that conventional antibiotic therapy would be less effective in the coming decades and more emphasis should be given for the development of novel antiinfective therapies. Cysteine rich peptides (CRPs) are broad-spectrum antimicrobial agents that modulate the innate immune system of different life forms such as bacteria, protozoans, fungi, plants, insects, and animals. These are also expressed in several plant tissues in response to invasion by pathogens, and play a crucial role in the regulation of plant growth and development. The present work explores the importance of CRPs as potent antimicrobial agents, which can supplement and/or replace the conventional antibiotics. Different plant parts of diverse plant species showed the presence of antimicrobial peptides (AMPs), which had significant structural and functional diversity. The plant-derived AMPs exhibited potent activity toward a range of plant and animal pathogens, protozoans, insects, and even against cancer cells. The cysteine-rich AMPs have opened new avenues for the use of plants as biofactories for the production of antimicrobials and can be considered as promising antimicrobial drugs in biotherapeutics.
    Matched MeSH terms: Pore Forming Cytotoxic Proteins/pharmacology*
  2. Pardhi DM, Şen Karaman D, Timonen J, Wu W, Zhang Q, Satija S, et al.
    Int J Pharm, 2020 Aug 30;586:119531.
    PMID: 32540348 DOI: 10.1016/j.ijpharm.2020.119531
    This review details the antimicrobial applications of inorganic nanomaterials of mostly metallic form, and the augmentation of activity by surface conjugation of peptide ligands. The review is subdivided into three main sections, of which the first describes the antimicrobial activity of inorganic nanomaterials against gram-positive, gram-negative and multidrug-resistant bacterial strains. The second section highlights the range of antimicrobial peptides and the drug resistance strategies employed by bacterial species to counter lethality. The final part discusses the role of antimicrobial peptide-decorated inorganic nanomaterials in the fight against bacterial strains that show resistance. General strategies for the preparation of antimicrobial peptides and their conjugation to nanomaterials are discussed, emphasizing the use of elemental and metallic oxide nanomaterials. Importantly, the permeation of antimicrobial peptides through the bacterial membrane is shown to aid the delivery of nanomaterials into bacterial cells. By judicious use of targeting ligands, the nanomaterial becomes able to differentiate between bacterial and mammalian cells and, thus, reduce side effects. Moreover, peptide conjugation to the surface of a nanomaterial will alter surface chemistry in ways that lead to reduction in toxicity and improvements in biocompatibility.
    Matched MeSH terms: Pore Forming Cytotoxic Proteins/pharmacology*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links