Displaying all 7 publications

Abstract:
Sort:
  1. Bagyinszky E, Youn YC, An SS, Kim S
    Clin Interv Aging, 2016;11:1467-1488.
    PMID: 27799753
    Alzheimer's disease (AD), the most common form of senile dementia, is a genetically complex disorder. In most Asian countries, the population and the number of AD patients are growing rapidly, and the genetics of AD has been extensively studied, except in Japan. However, recent studies have been started to investigate the genes and mutations associated with AD in Korea, the People's Republic of China, and Malaysia. This review describes all of the known mutations in three early-onset AD (EOAD) causative genes (APP, PSEN1, and PSEN2) that were discovered in Asian countries. Most of the EOAD-associated mutations have been detected in PSEN1, and several novel PSEN1 mutations were recently identified in patients from various parts of the world, including Asia. Until 2014, no PSEN2 mutations were found in Asian patients; however, emerging studies from Korea and the People's Republic of China discovered probably pathogenic PSEN2 mutations. Since several novel mutations were discovered in these three genes, we also discuss the predictions on their pathogenic nature. This review briefly summarizes genome-wide association studies of late-onset AD and the genes that might be associated with AD in Asian countries. Standard sequencing is a widely used method, but it has limitations in terms of time, cost, and efficacy. Next-generation sequencing strategies could facilitate genetic analysis and association studies. Genetic testing is important for the accurate diagnosis and for understanding disease-associated pathways and might also improve disease therapy and prevention.
    Matched MeSH terms: Presenilin-1/genetics*
  2. Hamezah HS, Durani LW, Yanagisawa D, Ibrahim NF, Aizat WM, Makpol S, et al.
    J Alzheimers Dis, 2019;72(1):229-246.
    PMID: 31594216 DOI: 10.3233/JAD-181171
    Tocotrienol-rich fraction (TRF) is a mixture of vitamin E analogs derived from palm oil. We previously demonstrated that supplementation with TRF improved cognitive function and modulated amyloid pathology in AβPP/PS1 mice brains. The current study was designed to examine proteomic profiles underlying the therapeutic effect of TRF in the brain. Proteomic analyses were performed on samples of hippocampus, medial prefrontal cortex (mPFC), and striatum using liquid chromatography coupled to Q Exactive HF Orbitrap mass spectrometry. From these analyses, we profiled a total of 5,847 proteins of which 155 proteins were differentially expressed between AβPP/PS1 and wild-type mice. TRF supplementation of these mice altered the expression of 255 proteins in the hippocampus, mPFC, and striatum. TRF also negatively modulated the expression of amyloid beta A4 protein and receptor-type tyrosine-protein phosphatase alpha protein in the hippocampus. The expression of proteins in metabolic pathways, oxidative phosphorylation, and those involved in Alzheimer's disease were altered in the brains of AβPP/PS1 mice that received TRF supplementation.
    Matched MeSH terms: Presenilin-1/genetics; Presenilin-1/metabolism
  3. Giau VV, Bagyinszky E, Youn YC, An SSA, Kim S
    Int J Mol Sci, 2019 Sep 25;20(19).
    PMID: 31557888 DOI: 10.3390/ijms20194757
    The number of patients with Alzheimer's disease (AD) is rapidly increasing in Asia. Mutations in the amyloid protein precursor (APP), presenilin-1 (PSEN1), and presenilin-2 (PSEN2) genes can cause autosomal dominant forms of early-onset AD (EOAD). Although these genes have been extensively studied, variant classification remains a challenge, highlighting the need to colligate mutations across populations. In this study, we performed a genetic screening for mutations in the APP, PSEN1, and PSEN2 genes in 200 clinically diagnosed EOAD patients across four Asian countries, including Thailand, Malaysia, the Philippines, and Korea, between 2009 and 2018. Thirty-two (16%) patients presented pathogenic APP, PSEN1, or PSEN2 variants; eight (25%), 19 (59%), and five (16%) of the 32 patients presented APP, PSEN1, and PSEN2 variants, respectively. Among the 21 novel and known non-synonymous variants, five APP variants were found in Korean patients and one APP variant was identified in a Thai patient with EOAD. Nine, two, and one PSEN1 mutation was found in a Korean patient, Malaysian siblings, and a Thai patient, respectively. Unlike PSEN1 mutations, PSEN2 mutations were rare in patients with EOAD; only three variants were found in Korean patients with EOAD. Comparison of AD-causative point mutations in Asian countries; our findings explained only a small fraction of patients, leaving approximately 84% (p = 0.01) of autosomal dominant pedigrees genetically unexplained. We suggest that the use of high-throughput sequencing technologies for EOAD patients can potentially improve our understanding of the molecular mechanisms of AD.
    Matched MeSH terms: Presenilin-1/genetics*; Presenilin-1/chemistry
  4. Durani LW, Hamezah HS, Ibrahim NF, Yanagisawa D, Nasaruddin ML, Mori M, et al.
    J Alzheimers Dis, 2018;64(1):249-267.
    PMID: 29889072 DOI: 10.3233/JAD-170880
    We have recently shown that the tocotrienol-rich fraction (TRF) of palm oil, a mixture of vitamin E analogs, improves amyloid pathology in vitro and in vivo. However, precise mechanisms remain unknown. In this study, we examined the effects of long-term (10 months) TRF treatment on behavioral impairments and brain metabolites in (15 months old) AβPP/PS1 double transgenic (Tg) Alzheimer's disease (AD) mice. The open field test, Morris water maze, and novel object recognition tasks revealed improved exploratory activity, spatial learning, and recognition memory, respectively, in TRF-treated Tg mice. Brain metabolite profiling of wild-type and Tg mice treated with and without TRF was performed using ultrahigh performance liquid chromatography (UHPLC) coupled to high-resolution accurate mass (HRAM)-orbitrap tandem mass spectrometry (MS/MS). Metabolic pathway analysis found perturbed metabolic pathways that linked to AD. TRF treatment partly ameliorated metabolic perturbations in Tg mouse hippocampus. The mechanism of this pre-emptive activity may occur via modulation of metabolic pathways dependent on Aβ interaction or independent of Aβ interaction.
    Matched MeSH terms: Presenilin-1/genetics; Presenilin-1/metabolism
  5. Matsuzaki Tada A, Hamezah HS, Pahrudin Arrozi A, Abu Bakar ZH, Yanagisawa D, Tooyama I
    J Alzheimers Dis, 2022;89(3):835-848.
    PMID: 35964178 DOI: 10.3233/JAD-220192
    BACKGROUND: Tripeptide Met-Lys-Pro (MKP), a component of casein hydrolysates, has effective angiotensin-converting enzyme (ACE) inhibitory activity. Brain angiotensin II enzyme activates the NADPH oxidase complex via angiotensin II receptor type 1 (AT1) and enhances oxidative stress injury. ACE inhibitors improved cognitive function in Alzheimer's disease (AD) mouse models and previous clinical trials. Thus, although undetermined, MKP may be effective against pathological amyloid-β (Aβ) accumulation-induced cognitive impairment.

    OBJECTIVE: The current study aimed to investigate the potential of MKP as a pharmaceutical against AD by examining MKP's effect on cognitive function and molecular changes in the brain using double transgenic (APP/PS1) mice.

    METHODS: Experimental procedures were conducted in APP/PS1 mice (n = 38) with a C57BL/6 background. A novel object recognition test was used to evaluate recognition memory. ELISA was used to measure insoluble Aβ40, Aβ42, and TNF-α levels in brain tissue. Immunohistochemical analysis allowed the assessment of glial cell activation in MKP-treated APP/PS1 mice.

    RESULTS: The novel object recognition test revealed that MKP-treated APP/PS1 mice showed significant improvement in recognition memory. ELISA of brain tissue showed that MKP significantly reduced insoluble Aβ40, Aβ42, and TNF-α levels. Immunohistochemical analysis indicated the suppression of the marker for microglia and reactive astrocytes in MKP-treated APP/PS1 mice.

    CONCLUSION: Based on these results, we consider that MKP could ameliorate pathological Aβ accumulation-induced cognitive impairment in APP/PS1 mice. Furthermore, our findings suggest that MKP potentially contributes to preventing cognitive decline in AD.

    Matched MeSH terms: Presenilin-1/genetics
  6. Mohd Murshid N, Aminullah Lubis F, Makpol S
    Cell Mol Neurobiol, 2020 Oct 19.
    PMID: 33074454 DOI: 10.1007/s10571-020-00979-z
    Epigenetic mechanisms involving the modulation of gene activity without modifying the DNA bases are reported to have lifelong effects on mature neurons in addition to their impact on synaptic plasticity and cognition. Histone methylation and acetylation are involved in synchronizing gene expression and protein function in neuronal cells. Studies have demonstrated in experimental models of neurodegenerative disorders that manipulations of these two mechanisms influence the susceptibility of neurons to degeneration and apoptosis. In Alzheimer's disease (AD), the expression of presenilin 1 (PSEN1) is markedly increased due to decreased methylation at CpG sites, thus promoting the accumulation of toxic amyloid-β (Aβ) peptide. In Parkinson's disease (PD), dysregulation of α-synuclein (SNCA) expression is presumed to occur via aberrant methylation at CpG sites, which controls the activation or suppression of protein expression. Mutant Huntingtin (mtHTT) alters the activity of histone acetyltransferases (HATs), causing the dysregulation of transcription observed in most Huntington's disease (HD) cases. Folate, vitamin B6, vitamin B12, and S-adenosylmethionine (SAM) are vital cofactors involved in DNA methylation modification; 5-azacytidine (AZA) is the most widely studied DNA methyltransferase (DNMT) inhibitor, and dietary polyphenols are DNMT inhibitors in vitro. Drug intervention is believed to reverse the epigenetic mechanisms to serve as a regulator in neuronal diseases. Nevertheless, the biochemical effect of the drugs on brain function and the underlying mechanisms are not well understood. This review focuses on further discussion of therapeutic targets, emphasizing the potential role of epigenetic factors including histone and DNA modifications in the diseases.
    Matched MeSH terms: Presenilin-1
  7. Ibrahim NF, Yanagisawa D, Durani LW, Hamezah HS, Damanhuri HA, Wan Ngah WZ, et al.
    J Alzheimers Dis, 2017;55(2):597-612.
    PMID: 27716672
    Alzheimer's disease (AD) is the most common cause of dementia. The cardinal neuropathological characteristic of AD is the accumulation of amyloid-β (Aβ) into extracellular plaques that ultimately disrupt neuronal function and lead to neurodegeneration. One possible therapeutic strategy therefore is to prevent Aβ aggregation. Previous studies have suggested that vitamin E analogs slow AD progression in humans. In the present study, we investigated the effects of the tocotrienol-rich fraction (TRF), a mixture of vitamin E analogs from palm oil, on amyloid pathology in vitro and in vivo. TRF treatment dose-dependently inhibited the formation of Aβ fibrils and Aβ oligomers in vitro. Moreover, daily TRF supplementation to AβPPswe/PS1dE9 double transgenic mice for 10 months attenuated Aβ immunoreactive depositions and thioflavin-S-positive fibrillar type plaques in the brain, and eventually improved cognitive function in the novel object recognition test compared with control AβPPswe/PS1dE9 mice. The present result indicates that TRF reduced amyloid pathology and improved cognitive functions, and suggests that TRF is a potential therapeutic agent for AD.
    Matched MeSH terms: Presenilin-1/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links