Early cancer diagnosis remains the holy-grail in the battle against cancers progression. Tainted with debates and medical challenges, current therapeutic approaches for prostate cancer (PCa) lack early preventive measures, rapid diagnostic capabilities, risk factors identification, and portability, i.e. the inherent attributes offered by the label-free biosensing devices. Electronic assisted immunosensing systems inherit the high sensitivity and specificity properties due to the predilection of the antigen-antibody affinity. Bioelectronic immunosensor for PCa has attracted much attentions among the researchers due to its high-performance, easy to prepare, rapid feedback, and possibility for miniaturization. This review explores the current advances on bioelectronic immunosensors for the detection of PCa biomarker revealed in the past decade. The research milestones and current trends of the immunosensors are reported to project the future visions in order to propel their "lab-to-market" realization.
To address immunocapture of proteins in large cohorts of clinical samples high throughput sample processing is required. Here a method using the proteomic sample platform, ISET (integrated selective enrichment target) that integrates highly specific immunoaffinity capture of protein biomarker, digestion and sample cleanup with a direct interface to mass spectrometry is presented. The robustness of the on-ISET protein digestion protocol was validated by MALDI MS analysis of model proteins, ranging from 40 fmol to 1 pmol per nanovial. On-ISET digestion and MALDI MS/MS analysis of immunoaffinity captured disease-associated biomarker PSA (prostate specific antigen) from human seminal plasma are presented.