Bull breeding soundness evaluation (BBSE) is the most common procedure used to predict bull potential fertility. However, the use of traditional methods for semen evaluation can affect its reliability. The inclusion of additional advanced test in BBSE may increase its accuracy. This study aimed to investigate the correlation between the degree of sperm protamination and BBSE main parameters of scrotal circumference (SC), progressive motility (PM), morphologically normal sperm (NS), and different categories of morphological defects. In addition, to determine the correlation between the three methods used for protamine assessment, five Brangus bulls were subjected to the BBSE. Semen samples were collected via electro-ejaculation and evaluated using traditional methods. Three different methods were used to determine the degree of sperm protamination: aniline blue (AB) staining, chromomycin A3 staining with fluorescent microscope (CMA3-FLM), and CMA3 with flow cytometry (CMA3-FCM). Sperm protamine deficiency assessed using the three methods exhibited significant differences among bulls according to their classification by BBSE, and showed significant negative correlation with semen quality parameters of NS and PM. A significant positive correlation was found between AB positivity and morphological abnormalities. The three methods used for protamine assessment also revealed significant positive correlations. Among the three tests, AB staining was the cheapest and easiest test that offers an objective assessment method for sperm protamination. Hence, it can be concluded that the assessment of protamination using AB staining test might serve as an additional valuable parameter or a replacement whenever detail sperm motility and morphology analyses in conducting BBSE to predict bull fertility are not possible.
Assisted Reproductive Technology (ART) is a suite of laboratory techniques designed to rescue infertile phenotypes. While ART has led to the birth of 5 million ART babies worldwide, success rates rarely exceed 40%. One potential factor for this could be iatrogenic (‘clinician-induced’) damage to critical sperm proteins, such as phospholipase C zeta (PLCζ) and protamine, which are fundamental for oocyte activation and sperm DNA integrity, respectively. This report describes how we have begun to investigate the adverse effects of ART techniques upon these key sperm proteins. We also describe the pathway taken by Miss Suseela Yelumalai to acquire a scholarship from the Malaysian Government and her postgraduate experience at the University of Oxford. We introduce the facilities and learning opportunities available at the Institute of Reproductive Sciences (IRS) which houses Dr Kevin Coward’s research laboratory, and finally, highlight the potential for collaborative development between the Universities of Oxford and Malaya.
In this work, we describe results of the reproductive health monitoring studies in Mytilus galloprovincialis following spermatozoa hsp70 expression and protamine-like protein properties. Mussels control (ctr) were released within cages for 30 days in three different marine sites near Naples (Campania, Italy): Bagnoli south (BAs) and Bagnoli north (BAn), both close to a disposal metallurgical factory and in Capo Miseno (CM). Studies of hsp70 gene expression carried out, by RT-qPCR, in mussel spermatozoa have shown varied expression levels, particularly 5, 13, and 15-fold more than ctr in CM, BAs, and BAn, respectively, indicating highest involvement of stress proteins in spermatozoa of mussels in Bagnoli. In order to evaluate the possible risk on Mytilus galloprovincialis sustainability loss, electrophoretic analyses were performed on protamine-like proteins (PL) of collected spermatozoa. The results showed that CM PL were apparently unaltered with respect to ctr PL, while BAs and BAn PL appeared in part in the form of peptides and in part as bands with low mobility. Further, CM and BAs PL showed, by electrophoretic mobility shift assay, a decrease in DNA binding ability and a change in their DNA binding mode. The results of this investigation show the usefulness of the study of alterations of spermatozoa hsp70 expression and protamine-like protein properties for eco-toxicological evaluation using Mytilus galloprovincialis as a bioindicator.
This study examines the effect of melatonin on leptin-induced changes in transition of histone to protamine in adult rats during spermatogenesis. Twelve-week-old Sprague-Dawley rats were randomised into control, leptin-, leptin-melatonin-10-, leptin-melatonin-20- and melatonin-10-treated groups with six rats per group. Leptin was given via intraperitoneal injections (i.p.) daily for 42 days (60 μg/kg body weight). Rats in the leptin- and melatonin-treated groups were given either 10 or 20 mg day-1 kg-1 body weight of leptin in drinking water. Melatonin-10-treated group received only 10 mg of melatonin day-1 kg-1 body weight in drinking water for 42 days. Control rats received 0.1 ml of 0.9% saline. Upon completion of the treatment, sperm count, morphology and histone-to-protamine ratio were estimated. Gene expression of HAT, HDAC1, HDAC2, H2B, H2A, H1, PRM1, PRM2, TNP1 and TNP2 was determined. Data were analysed using ANOVA. Sperm count was significantly lower, whereas the fraction of spermatozoa with abnormal morphology, the ratio of histone-to-protamine transition and the expressions of HAT, HDAC1, HDAC2, H2B, H2A, H1, PRM1 were significantly higher in leptin-treated rats than those in controls or melatonin-treated rats. It appears that exogenous leptin administration adversely affects histone-to-protamine transition, which is prevented by concurrent administration of melatonin.