DNA polymerase β, a member of the X-family of DNA polymerases, undergoes complex regulations both in vitro and in vivo through various posttranslational modifications, including phosphorylation and methylation. The impact of these modifications varies depending on the specific amino acid undergoing alterations. In vitro, methylation of DNA polymerase β with the enzyme protein arginine methyltransferase 6 (PRMT6) at R83 and R152 enhances polymerase activity by improving DNA binding and processivity. Although these studies have shown that methylation improves DNA binding, the underlying mechanism of enhancement of polymerase activity in terms of structure and dynamics remains poorly understood. To address this gap, we modeled the methylated enzyme/DNA complex and conducted a microsecond-long simulation in the presence of Mg ions. Our results revealed significant structural changes induced by methylating both R83 and R152 sites in the enzyme. Specifically, these changes caused the DNA fragment to move closer to the C- and N-subdomains, forming additional hydrogen bonds. Furthermore, the cross-correlation map demonstrated that methylation enhanced long-range correlations within the domains/subdomains of DNA polymerase β, along with an increase in the linear mutual information value between the domains/subdomains and DNA fragments. The graph connectivity network also illustrated that methylation modulates the information pathway and identifies residues exhibiting long-distance coupling with the methylated sites. Our results provide an atomic-level understanding of the structural transition induced by methylation, shedding light on the mechanisms underlying the methylation-induced enhancement of activity in DNA polymerase β.
We investigated the role of protein arginine methylation (PAM) in estrogen receptor (ER)-positive breast cancer cells through pharmacological intervention. Tamoxifen (TAM) or adenosine dialdehyde (ADOX), independently, triggered cell cycle arrest and down-regulated PAM, as reduced protein arginine methyltransferase1 (PRMT1) mRNA and asymmetric dimethylarginine (ADMA) levels. Synergistic effect of these compounds elicited potent anti-cancer effect. However, reduction in ADMA was not proportionate with the compound-induced down-regulation of PRMT1 mRNA. We hypothesized that the disproportionate effect is due to the influence of the compounds on other methyltransferases, which catalyze the arginine dimethylation reaction and the diversity in the degree of drug-protein interaction among these methyltransferases. In silico analyses revealed that independently, ADOX or TAM, binds with phosphatidylethanolamine-methyltransferase (PEMT) or betaine homocysteine-methyl transferase (BHMT); and that the binding affinity of ADOX with PEMT or BHMT is prominent than TAM. These observations suggest that in breast cancer, synergistic effect of ADOX + TAM elicits impressive protective function by regulating PAM; and plausibly, restoration of normal enzyme activities of methyltransferases catalyzing arginine dimethylation could have clinical benefits.