Displaying all 3 publications

Abstract:
Sort:
  1. Chong TM, Yin WF, Mondy S, Grandclément C, Dessaux Y, Chan KG
    J Bacteriol, 2012 Nov;194(22):6366.
    PMID: 23105092 DOI: 10.1128/JB.01702-12
    Here we present the draft genome of Pseudomonas mendocina strain S5.2, possessing tolerance to a high concentration of copper. In addition to being copper resistant, the genome of P. mendocina strain S5.2 contains a number of heavy-metal-resistant genes known to confer resistance to multiple heavy-metal ions.
    Matched MeSH terms: Pseudomonas mendocina/classification; Pseudomonas mendocina/drug effects*; Pseudomonas mendocina/genetics*
  2. Martla M, Umsakul K, Sudesh K
    J Basic Microbiol, 2018 Nov;58(11):977-986.
    PMID: 30095175 DOI: 10.1002/jobm.201800279
    Polyhydroxyalkanoates (PHAs) has been paid great attention because of its useful thermoplastic properties and complete degradation in various natural environments. But, at industrial level, the successful commercialization of PHAs is limited by the high production cost due to the expensive carbon source and recovery processes. Pseudomonas mendocina PSU cultured for 72 h in mineral salts medium (MSM) containing 2% (v/v) biodiesel liquid waste (BLW) produced 79.7 wt% poly(3-hydroxybutyrate) (PHB) at 72 h. In addition, this strain produced 43.6 wt% poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) with 8.6 HV mol% at 60 h when added with 0.3% sodium propionate. The synthesized intracellular PHA granules were recovered and purified by the recently reported biological method using mealworms. The weight average molecular weight (Mw ) and number average molecular weight (Mn ) of the biologically extracted PHA were higher than that from the chloroform extraction with comparable melting temperature (Tm ) and high purity. This study has successfully established a low-cost process to synthesize PHAs from BLW and subsequently confirmed the ability of mealworms to extract PHAs from various kinds of bacterial cells.
    Matched MeSH terms: Pseudomonas mendocina/growth & development; Pseudomonas mendocina/metabolism*
  3. Chanasit W, Hodgson B, Sudesh K, Umsakul K
    Biosci Biotechnol Biochem, 2016 Jul;80(7):1440-50.
    PMID: 26981955 DOI: 10.1080/09168451.2016.1158628
    Conditions for the optimal production of polyhydroxyalkanoate (PHA) by Pseudomonas mendocina PSU using a biodiesel liquid waste (BLW) were determined by response surface methodology. These were an initial carbon to nitrogen ratio (C/N) of 40 (mole/mole), an initial pH of 7.0, and a temperature of 35 °C. A biomass and PHA concentration of 3.65 g/L and about 2.6 g/L (77% DCW), respectively, were achieved in a growth associated process using 20 g/L glycerol in the BLW after 36 h of exponential growth. The PHA monomer compositions were 3HB (3-hydroxybutyrate), a short-chain-length-PHA, and the medium-chain-length-PHA e.g. 3-hydroxyoctanoate and 3-hydroxydecanoate. Both the phbC and phaC genes were characterized. The phbC enzyme had not been previously detected in a Pseudomonas mendocina species. A 2.15 g/L of an exopolysaccharide, alginate, was also produced with a similar composition to that of other Pseudomonas species.
    Matched MeSH terms: Pseudomonas mendocina
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links