Displaying all 5 publications

Abstract:
Sort:
  1. Bertell R, Jayabalan T
    JAMA, 1990 Feb 2;263(5):662.
    PMID: 2296121
    Matched MeSH terms: Radioactive Waste/adverse effects*
  2. Chong CS, Chong HY, Fun HK, Leong LS
    Health Phys, 1985 Nov;49(5):1008-10.
    PMID: 4066326
    Matched MeSH terms: Radioactive Waste/analysis*
  3. Ismail B, Teng IL, Muhammad Samudi Y
    Radiat Prot Dosimetry, 2011 Nov;147(4):600-7.
    PMID: 21266370 DOI: 10.1093/rpd/ncq577
    In Malaysia technologically enhanced naturally occurring radioactive materials (TENORM) wastes are mainly the product of the oil and gas industry and mineral processing. Among these TENORM wastes are tin tailing, tin slag, gypsum and oil sludge. Mineral processing and oil and gas industries produce large volume of TENORM wastes that has become a radiological concern to the authorities. A study was carried out to assess the radiological risk related to workers working at these disposal sites and landfills as well as to the members of the public should these areas be developed for future land use. Radiological risk was assessed based on the magnitude of radiation hazard, effective dose rates and excess cancer risks. Effective dose rates and excess cancer risks were estimated using RESRAD 6.4 computer code. All data on the activity concentrations of NORM in wastes and sludges used in this study were obtained from the Atomic Energy Licensing Board, Malaysia, and they were collected over a period of between 5 and 10 y. Results obtained showed that there was a wide range in the total activity concentrations (TAC) of nuclides in the TENORM wastes. With the exception of tin slag and tin tailing-based TENORM wastes, all other TENORM wastes have TAC values comparable to that of Malaysia's soil. Occupational Effective Dose Rates estimated in all landfill areas were lower than the 20 mSv y(-1) permissible dose limit. The average Excess Cancer Risk Coefficient was estimated to be 2.77×10(-3) risk per mSv. The effective dose rates for residents living on gypsum and oil sludge-based TENORM wastes landfills were estimated to be lower than the permissible dose limit for members of the public, and was also comparable to that of the average Malaysia's ordinary soils. The average excess cancer risk coefficient was estimated to be 3.19×10(-3) risk per mSv. Results obtained suggest that gypsum and oil sludge-based TENORM wastes should be exempted from any radiological regulatory control and should be considered radiologically safe for future land use.
    Matched MeSH terms: Radioactive Waste/analysis*
  4. Muhamat Omar, Zalina Laili, Mohd Suhaimi Hamzah
    MyJurnal
    Qualitative and quantitative analysis of samples require good judgment from the analysts. These two aspects in gamma spectrometric analysis of Proficiency Test and solid radioactive waste samples for the determination of radionuclides are discussed. It is vital to judge and decide what energy peaks belong to which radionuclides prior to the creation of customized radionuclide library for the analysis of specific samples. Corrections due to radionuclide decay and growth, and the half-life assigned to a particular radionuclide in the uranium and thorium series are also discussed. Discussion on judgment to confirm the presence of thorium in food samples based on gamma spectrometry and neutron activation analysis is also provided.
    Matched MeSH terms: Radioactive Waste
  5. Majidnia Z, Idris A, Majid M, Zin R, Ponraj M
    Appl Radiat Isot, 2015 Nov;105:105-113.
    PMID: 26275818 DOI: 10.1016/j.apradiso.2015.06.028
    In this paper, both maghemite (γ-Fe2O3) and titanium oxide (TiO2) nanoparticles were synthesized and mixed in various ratios and embedded in PVA and alginate beads. Batch sorption experiments were applied for removal of barium ions from aqueous solution under sunlight using the beads. The process has been investigated as a function of pH, contact time, temperature, initial barium ion concentration and TiO2:γ-Fe2O3 ratios (1:10, 1:60 and 1). The recycling attributes of these beads were also considered. Furthermore, the results revealed that 99% of the Ba(II) was eliminated in 150min at pH 8 under sunlight. Also, the maghemite and titania PVA-alginate beads can be readily isolated from the aqueous solution after the process and reused for at least 7 times without significant losses of their initial properties. The reduction of Ba(II) with maghemite and titania PVA-alginate beads fitted the pseudo first order and second order Langmuir-Hinshelwood (L-H) kinetic model.
    Matched MeSH terms: Radioactive Waste/analysis*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links