Displaying all 5 publications

Abstract:
Sort:
  1. Yamayoshi S, Yamashita Y, Li J, Hanagata N, Minowa T, Takemura T, et al.
    Nat Med, 2009 Jul;15(7):798-801.
    PMID: 19543282 DOI: 10.1038/nm.1992
    Enterovirus 71 (EV71) belongs to human enterovirus species A of the genus Enterovirus within the family Picornaviridae. EV71, together with coxsackievirus A16 (CVA16), are most frequently associated with hand, foot and mouth disease (HFMD). Although HFMD is considered a mild exanthematous infection, infections involving EV71, but not CVA16, can progress to severe neurological disease, including fatal encephalitis, aseptic meningitis and acute flaccid paralysis. In recent years, epidemic and sporadic outbreaks of neurovirulent EV71 infections have been reported in Taiwan, Malaysia, Singapore, Japan and China. Here, we show that human scavenger receptor class B, member 2 (SCARB2, also known as lysosomal integral membrane protein II or CD36b like-2) is a receptor for EV71. EV71 binds soluble SCARB2 or cells expressing SCARB2, and the binding is inhibited by an antibody to SCARB2. Expression of human SCARB2 enables normally unsusceptible cell lines to support EV71 propagation and develop cytopathic effects. EV71 infection is hampered by the antibody to SCARB2 and soluble SCARB2. SCARB2 also supports the infection of the milder pathogen CVA16. The identification of SCARB2 as an EV71 and CVA16 receptor contributes to a better understanding of the pathogenicity of these viruses.
    Matched MeSH terms: Receptors, Scavenger/analysis; Receptors, Scavenger/genetics; Receptors, Scavenger/physiology*
  2. Chow YP, Abdul Murad NA, Mohd Rani Z, Khoo JS, Chong PS, Wu LL, et al.
    Orphanet J Rare Dis, 2017 Feb 21;12(1):40.
    PMID: 28222800 DOI: 10.1186/s13023-017-0575-7
    BACKGROUND: Pendred syndrome (PDS, MIM #274600) is an autosomal recessive disorder characterized by congenital sensorineural hearing loss and goiter. In this study, we describing the possible PDS causal mutations in a Malaysian family with 2 daughters diagnosed with bilateral hearing loss and hypothyroidism.

    METHODS AND RESULTS: Whole exome sequencing was performed on 2 sisters with PDS and their unaffected parents. Our results showed that both sisters inherited monoallelic mutations in the 2 known PDS genes, SLC26A4 (ENST00000265715:c.1343C > T, p.Ser448Leu) and GJB2 (ENST00000382844:c.368C > A, p.Thr123Asn) from their father, as well as another deafness-related gene, SCARB2 (ENST00000264896:c.914C > T, p.Thr305Met) from their mother. We postulated that these three heterozygous mutations in combination may be causative to deafness, and warrants further investigation. Furthermore, we also identified a compound heterozygosity involving the DUOX2 gene (ENST00000603300:c.1588A > T:p.Lys530* and c.3329G > A:p.Arg1110Gln) in both sisters which are inherited from both parents and may be correlated with early onset of goiter. All the candidate mutations were predicted deleterious by in silico tools.

    CONCLUSIONS: In summary, we proposed that PDS in this family could be a polygenic disorder which possibly arises from a combination of heterozygous mutations in SLC26A4, GJB2 and SCARB2 which associated with deafness, as well as compound heterozygous DUOX2 mutations which associated with thyroid dysfunction.

    Matched MeSH terms: Receptors, Scavenger/genetics; Receptors, Scavenger/metabolism*
  3. Phang SW, Ooi BK, Ahemad N, Yap WH
    Vascul Pharmacol, 2020 03 19;128-129:106675.
    PMID: 32200116 DOI: 10.1016/j.vph.2020.106675
    The transformation of macrophages to foam cells is a critical component in atherosclerotic lesion formation. Maslinic acid (MA), a novel natural pentacyclic triterpene, has cardioprotective and anti-inflammatory properties. It is hypothesized that MA can suppress monocyte recruitment to endothelial cells and inhibit macrophage foam cells formation. Previous study shows that MA inhibits inflammatory effects induced by sPLA2-IIA, including foam cells formation. This study elucidates the regulatory effect of MA in monocyte recruitment, macrophage lipid accumulation and cholesterol efflux. Our findings demonstrate that MA inhibits THP-1 monocyte adhesion to HUVEC cells in a TNFα-dependent and independent manner, but it induces trans-endothelial migration marginally at low concentration. MA down-regulates both gene and protein expression on VCAM-1 and MCP-1 in HUVECs. We further showed that MA suppresses macrophage foam cells formation, as indicated from the Oil-Red-O staining and flow cytometric analysis of intracellular lipids accumulation. The effects observed may be attributed to the antioxidant properties of MA where it was shown to suppress CuSO4-induced lipid peroxidation. MA inhibits scavenger receptors SR-A and CD36 expression while enhancing cholesterol efflux. MA enhances cholesterol efflux transporters ABCA1 and ABCG1 genes expression marginally without inducing its protein expression. In this study, MA was shown to target important steps that contribute to foam cell formation, including its ability in reducing monocytes adhesion to endothelial cells and LDL peroxidation, down-regulating scavenger receptors expression as well as enhancing cholesterol efflux, which might be of great importance in the context of atherosclerosis prevention and treatment.
    Matched MeSH terms: Receptors, Scavenger
  4. He Y, Ong KC, Gao Z, Zhao X, Anderson VM, McNutt MA, et al.
    Am J Pathol, 2014 Mar;184(3):714-20.
    PMID: 24378407 DOI: 10.1016/j.ajpath.2013.11.009
    Enterovirus 71 (EV71; family Picornaviridae, species human Enterovirus A) usually causes hand, foot, and mouth disease, which may rarely be complicated by fatal encephalomyelitis. We investigated extra-central nervous system (extra-CNS) tissues capable of supporting EV71 infection and replication, and have correlated tissue infection with expression of putative viral entry receptors, scavenger receptor B2 (SCARB2), and P-selectin glycoprotein ligand-1 (PSGL-1). Formalin-fixed, paraffin-embedded CNS and extra-CNS tissues from seven autopsy cases were examined by IHC and in situ hybridization to evaluate viral antigens and RNA. Viral receptors were identified with IHC. In all seven cases, the CNS showed stereotypical distribution of inflammation and neuronal localization of viral antigens and RNA, confirming the clinical diagnosis of EV71 encephalomyelitis. In six cases in which tonsillar tissues were available, viral antigens and/or RNA were localized to squamous epithelium lining the tonsillar crypts. Tissues from the gastrointestinal tract, pancreas, mesenteric nodes, spleen, and skin were all negative for viral antigens/RNA. Our novel findings strongly suggest that tonsillar crypt squamous epithelium supports active viral replication and represents an important source of viral shedding that facilitates person-to-person transmission by both the fecal-oral or oral-oral routes. It may also be a portal for viral entry. A correlation between viral infection and SCARB2 expression appears to be more significant than for PSGL-1 expression.
    Matched MeSH terms: Receptors, Scavenger/metabolism*
  5. Mohd Kamal Nik Hasan, Ihsan Safwan Kamarazaman, Nur Zalikha Mohd Taza, Rasadah Mat Ali, Mohd Shahidan Mohd Arshad, Zamree Md Shah, et al.
    Sains Malaysiana, 2015;44:1501-1510.
    Anacardium occidentale belongs to the Anacardiaceae family. It had been scientifically proven to have antihypercholesterolemia effect in high cholesterol diet induced animal laboratory study. However there is no study regarding the mechanisms involves in cholesterol reducing effect by A. occidentale leaves extract. In this study, cytotoxic assessment and anti-cholesterol activity of A. occidentale leaves aqueous extract (AOE) were investigated. Cytotoxic study was performed by exposing hepatoma cell (Hep G2) towards AOE with concentration ranging from 0.002 to 20 mg/mL for 24 h. Anacardium occidentale extract was found to be not toxic to the cell. Then, the highest and not toxic AOE concentrations (20, 10, 5 and 2.5 mg/mL) were selected for anti-cholesterol study. The ability of AOE to reduce cholesterol in cell culture experiment was carried out by pretreating Hep G2 with selected concentrations of AOE in 6-well plate before the cell was exposed to low density lipoprotein (LDL). The concentration of farnesyl-diphosphate farnesyltransferase (FDFT1), apolipoprotein A1 (Apo A1), lecithin-cholesterol acyltransferase (LCAT), low density lipoprotein receptor (LDL R), scavenger receptor B1 (SR-B1), ATP binding cassette transporter A1 (ABCA-1) and hepatic lipase (HL) were determined from the 6-well plate media. The results showed that AOE did not significantly increase the concentration of LDLR. However, AOE significantly increased the concentration of FDFT1, APO A1, LCAT, SRB-1, ABCA-1 and HL. The HMGR activity experiment showed that all selected AOE concentrations cannot significantly reduce the HMGR enzyme activity. These findings suggested that AOE may involve in reverse cholesterol transport process to reduce cholesterol metabolism in Hep G2 cell.
    Matched MeSH terms: Receptors, Scavenger
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links