Displaying all 3 publications

Abstract:
Sort:
  1. Escaffre O, Borisevich V, Carmical JR, Prusak D, Prescott J, Feldmann H, et al.
    J Virol, 2013 Mar;87(6):3284-94.
    PMID: 23302882 DOI: 10.1128/JVI.02576-12
    Hendra virus (HeV) and Nipah virus (NiV) are deadly zoonotic viruses for which no vaccines or therapeutics are licensed for human use. Henipavirus infection causes severe respiratory illness and encephalitis. Although the exact route of transmission in human is unknown, epidemiological studies and in vivo studies suggest that the respiratory tract is important for virus replication. However, the target cells in the respiratory tract are unknown, as are the mechanisms by which henipaviruses can cause disease. In this study, we characterized henipavirus pathogenesis using primary cells derived from the human respiratory tract. The growth kinetics of NiV-Malaysia, NiV-Bangladesh, and HeV were determined in bronchial/tracheal epithelial cells (NHBE) and small airway epithelial cells (SAEC). In addition, host responses to infection were assessed by gene expression analysis and immunoassays. Viruses replicated efficiently in both cell types and induced large syncytia. The host response to henipavirus infection in NHBE and SAEC highlighted a difference in the inflammatory response between HeV and NiV strains as well as intrinsic differences in the ability to mount an inflammatory response between NHBE and SAEC. These responses were highest during HeV infection in SAEC, as characterized by the levels of key cytokines (interleukin 6 [IL-6], IL-8, IL-1α, monocyte chemoattractant protein 1 [MCP-1], and colony-stimulating factors) responsible for immune cell recruitment. Finally, we identified virus strain-dependent variability in type I interferon antagonism in NHBE and SAEC: NiV-Malaysia counteracted this pathway more efficiently than NiV-Bangladesh and HeV. These results provide crucial new information in the understanding of henipavirus pathogenesis in the human respiratory tract at an early stage of infection.
    Matched MeSH terms: Respiratory Mucosa/virology
  2. Baseler L, Scott DP, Saturday G, Horne E, Rosenke R, Thomas T, et al.
    PLoS Negl Trop Dis, 2016 Nov;10(11):e0005120.
    PMID: 27812087 DOI: 10.1371/journal.pntd.0005120
    BACKGROUND: Nipah virus causes respiratory and neurologic disease with case fatality rates up to 100% in individual outbreaks. End stage lesions have been described in the respiratory and nervous systems, vasculature and often lymphoid organs in fatal human cases; however, the initial target organs of Nipah virus infection have not been identified. Here, we detected the initial target tissues and cells of Nipah virus and tracked virus dissemination during the early phase of infection in Syrian hamsters inoculated with a Nipah virus isolate from Malaysia (NiV-M) or Bangladesh (NiV-B).

    METHODOLOGY/PRINCIPAL FINDINGS: Syrian hamsters were euthanized between 4 and 48 hours post intranasal inoculation and tissues were collected and analyzed for the presence of viral RNA, viral antigen and infectious virus. Virus replication was first detected at 8 hours post inoculation (hpi). Nipah virus initially targeted type I pneumocytes, bronchiolar respiratory epithelium and alveolar macrophages in the lung and respiratory and olfactory epithelium lining the nasal turbinates. By 16 hpi, virus disseminated to epithelial cells lining the larynx and trachea. Although the pattern of viral dissemination was similar for both virus isolates, the rate of spread was slower for NiV-B. Infectious virus was not detected in the nervous system or blood and widespread vascular infection and lesions within lymphoid organs were not observed, even at 48 hpi.

    CONCLUSIONS/SIGNIFICANCE: Nipah virus initially targets the respiratory system. Virus replication in the brain and infection of blood vessels in non-respiratory tissues does not occur during the early phase of infection. However, virus replicates early in olfactory epithelium and may serve as the first step towards nervous system dissemination, suggesting that development of vaccines that block virus dissemination or treatments that can access the brain and spinal cord and directly inhibit virus replication may be necessary for preventing central nervous system pathology.

    Matched MeSH terms: Respiratory Mucosa/virology
  3. Middleton DJ, Westbury HA, Morrissy CJ, van der Heide BM, Russell GM, Braun MA, et al.
    J Comp Pathol, 2002 Feb-Apr;126(2-3):124-36.
    PMID: 11945001 DOI: 10.1053/jcpa.2001.0532
    A human isolate of Nipah virus from an outbreak of febrile encephalitis in Malaysia that coincided with a field outbreak of disease in pigs was used to infect eight 6-week-old pigs orally or subcutaneously and two cats oronasally. In pigs, the virus induced a respiratory and neurological syndrome consistent with that observed in the Malaysian pigs. Not all the pigs showed clinical signs, but Nipah virus was recovered from the nose and oropharynx of both clinically and sub-clinically infected animals. Natural infection of in-contact pigs, which was readily demonstrated, appeared to be acute and self-limiting. Subclinical infections occurred in both inoculated and in-contact pigs. Respiratory and neurological disease was also produced in the cats, with recovery of virus from urine as well as from the oropharynx. The clinical and pathological syndrome induced by Nipah virus in cats was comparable with that associated with Hendra virus infection in this species, except that in fatal infection with Nipah virus there was extensive inflammation of the respiratory epithelium, associated with the presence of viral antigen. Viral shedding via the nasopharynx, as observed in pigs and cats in the present study, was not a regular feature of earlier reports of experimental Hendra virus infection in cats and horses. The findings indicate the possibility of field transmission of Nipah virus between pigs via respiratory and oropharyngeal secretions.
    Matched MeSH terms: Respiratory Mucosa/virology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links