Displaying all 2 publications

Abstract:
Sort:
  1. Abdul-Latif NS, Ong MY, Nomanbhay S, Salman B, Show PL
    Bioengineered, 2020 12;11(1):154-164.
    PMID: 32013677 DOI: 10.1080/21655979.2020.1718471
    Carbon dioxide (CO2) emission will increase due to the increasing global plastic demand. Statistical data shows that plastic production alone will contribute to at least 20% of the annual global carbon budget in the near future. Hence, several alternative methods are recommended to overcome this problem, such as bio-product synthesis. Algae consist of diverse species and have huge potential to be a promising biomass feedstock for a range of purposes, including bio-oil production. The convenient cultivation method of algae could be one of the main support for algal biomass utilization. The aim of this study is to forecast and outline the strategies in order to meet the future demand (year 2050) of plastic production and, at the same time, reduce CO2 emission by replacing the conventional plastic with bio-based plastic. In this paper, the analysis for 25%, 50% and 75% CO2 reduction has been done by using carbon emission pinch analysis. The strategies of biomass utilization in Malaysia are also enumerated in this study. This study suggested that the algal biomass found in Malaysia coastal areas should be utilized and cultivated on a larger scale in order to meet the increasing plastic demand and, at the same time, reduce carbon footprint. Some of the potential areas for macroalgae sea-farming cultivation in Sabah coastline (Malaysia), comprised of about 3885 km2 (388,500 ha) in total, have been highlighted. These potential areas have the potential to produce up to 14.5 million tonnes (Mt)/y of macroalgae in total, which can contribute 370 Mt of phenol for bioplastic production.
    Matched MeSH terms: Seaweed/growth & development
  2. Lim SJ, Wan Aida WM, Maskat MY, Latip J, Badri KH, Hassan O, et al.
    Food Chem, 2016 Oct 15;209:267-73.
    PMID: 27173562 DOI: 10.1016/j.foodchem.2016.04.058
    Fucoidan is a sulphated polysaccharide that consists mainly of fucose, normally found in brown seaweeds. In this study, fucoidan was extracted from Sargassum binderi (Fsar) from Malaysia and subsequently characterised. The chemical characteristics of Fsar were found to be different than those of commercial food grade fucoidan (Fysk) and those of previously studied fucoidans. NMR analysis proposed that the main structure of Fsar is →3)fuc-2-OSO3(-)(1→3)fuc(1→. The molecular weight (47.87kDa) and degree of sulphation (0.20) of Fsar were higher than those of Fysk, at 27.98kDa and 0.15, respectively. However, Fsar's polydispersity index (1.12) and fucose content (34.50%) were lower than those of Fysk, at 1.88 and 43.30%, respectively. Both Fsar and Fysk showed similar thermo-gravimetric properties with four mass losses, amorphous in nature and negative optical rotations. Results show that Fsar has fundamental characteristics of fucoidan with different structural conformation i.e. variation in glycosidic linkages and sulphate group orientation.
    Matched MeSH terms: Seaweed/growth & development
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links