Displaying all 2 publications

Abstract:
Sort:
  1. Arina Nasruddin, Azura Amid, Muhd Ezza Faiez Othman
    MyJurnal
    Green chemical method was applied to synthesize nanoparticles using recombinant
    bromelain. Among the numerous applications of recombinant bromelain, there is still no research
    on nanoparticles synthesis which encourages its utilization in this study. Four chemicals which are
    copper (II) chloride dihydrate (CuCl2.2H2O), cerium nitrate hexahydrate (Ce(NO3)3.6H2O), sodium
    selenite (Na2SeO3), and iron (III) chloride hexahydrate (FeCl3.6H2O) were selected to be screened
    for the suitability in nanoparticles biosynthesis by recombinant bromelain. The nanoparticles
    formed were characterized by using UV-visible absorption spectra. The biosynthesis process then
    was optimized by varying the centrifugation speed, temperature, and time to get the maximum
    absorption and weight of nanoparticles through central composite design (CCD) tool. Only
    CuCl2.2H2O showed a positive result for the screening process which was represented by the
    formation of colloidal solution and a maximum absorption at 580 nm. Thus, optimization was
    carried out for this chemical. Based on the optimization model, maximum absorption and weight
    were predicted at 67.5°C, 2 hrs, and 9,600 rpm. These optimal conditions were validated by
    repeating the biosynthesis process. The absorption and weight of the nanoparticles depended on the
    reaction of the chemical with recombinant bromelain. 3D plots showed that the optimal condition
    for high responses mostly depends on temperature and time.
    Matched MeSH terms: Selenious Acid
  2. Ooi L, Heng LY, Mori IC
    Sensors (Basel), 2015;15(2):2354-68.
    PMID: 25621608 DOI: 10.3390/s150202354
    Biosensors fabricated with whole-cell bacteria appear to be suitable for detecting bioavailability and toxicity effects of the chemical(s) of concern, but they are usually reported to have drawbacks like long response times (ranging from hours to days), narrow dynamic range and instability during long term storage. Our aim is to fabricate a sensitive whole-cell oxidative stress biosensor which has improved properties that address the mentioned weaknesses. In this paper, we report a novel high-throughput whole-cell biosensor fabricated by immobilizing roGFP2 expressing Escherichia coli cells in a k-carrageenan matrix, for the detection of oxidative stress challenged by metalloid compounds. The E. coli roGFP2 oxidative stress biosensor shows high sensitivity towards arsenite and selenite, with wide linear range and low detection limit (arsenite: 1.0 × 10(-3)-1.0 × 10(1) mg·L(-1), LOD: 2.0 × 10(-4) mg·L(-1); selenite: 1.0 × 10(-5)-1.0 × 10(2) mg·L(-1), LOD: 5.8 × 10(-6) mg·L(-1)), short response times (0-9 min), high stability and reproducibility. This research is expected to provide a new direction in performing high-throughput environmental toxicity screening with living bacterial cells which is capable of measuring the bioavailability and toxicity of environmental stressors in a friction of a second.
    Matched MeSH terms: Selenious Acid/isolation & purification*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links