Cryopreservation is a technique used to preserve cells for long-time storage. It is widely used in agriculture to store male gametes in liquid nitrogen. The aim of this study was to determine the optimum thawing temperature and time for samples subjected to annexin V magnetic-activated cell sorting (AnMACS) as the sperm preparation technique. Pooled semen samples from three ejaculates were divided into two groups. The treatment group was subjected both to AnMACS and to being cryopreserved, whilst the control group was cryopreserved directly without MACS. Post-thaw analysis was carried out for samples thawed at either 20°C for 13 s, 37°C for 30 s, 40°C for 7 s, 60°C for 6 s or 80°C for 5 s. Sperm kinematics, viability and capacitation status were determined for samples subjected to all thawing temperatures described. Results showed that thawing at 37°C for 13 s for MACS-processed samples was a superior option compared with other thawing procedures; there was a significant difference in P < 0.05 values for curvilinear velocity (VCL μm/s) and sperm straightness (STR %) when samples were thawed at 40°C for 7 s, with fewer capacitated spermatozoa (P < 0.05) when samples were thawed at 37°C for 30 s, 40°C for 7 s or 60°C for 6 s. Hence, we can speculate that the use of AnMACS as the sperm preparation technique can somehow enhance sperm cryosurvival rate after cryopreservation, however the fertilization potential of these cells has yet to be determined.
To improve the Boer goat semen quality during cryopreservation process, three experiments were carried out to investigate the effect of (i) different concentration of ascorbic acid supplementation (ii) rate of cooling with chilled semen characteristics and (iii) method of freezing on post-thaw Boer goat sperm using Tris-based extender. Ascorbic acid at 8.5 mg/ml improved the sperm parameters (motility, integrity of membrane and acrosome, morphology and viability), compared to control in cooled samples (p < 0.05). With regard to other concentrations and post-thawed parameters, ascorbic acid at 2.5-8.5 mg/ml led to higher percentages of sperm motility and integrities of membrane and acrosome when compared to control (p < 0.05). Slow cooling rises to higher percentages of sperm motility, acrosome integrity and viability, in comparison with fast cooling, in terms of cooled and frozen samples (p < 0.05). Programmable freezing method produced the higher percentages of sperm motility, integrities of membrane and acrosome and viability when compared to the freezing method of polystyrene box during goat sperm freezing (p < 0.05). In conclusion, chilled and post-thawed sperm quality of Boer goat was improved when a Tris-based extender supplemented with ascorbic acid was used at stages of different cooling rates and freezing methods.
INTRODUCTION: This study evaluated the effect of human semen cryopreservation using an ultra-low temperature technique with a mechanical freezer at -85°C as an alternative method to the conventional liquid nitrogen technique at -196°C.
METHODS: This was a prospective experimental study conducted in the Medically Assisted Conception unit, Department of Obstetrics and Gynaecology, National University Hospital, Malaysia from January 1, 2006 to April 30, 2007. All normozoospermic semen samples were included in the study. The concentration, motility and percentage of intact DNA of each semen sample were assessed before and after freezing and thawing on Days 7 and 30 post freezing.
RESULTS: Sperm cryopreservation at -85°C was comparable to the conventional liquid nitrogen technique for a period of up to 30 days in a normozoospermic sample. There was no statistical difference in concentration (Day 7 p-value is 0.1, Day 30 p-value is 0.2), motility (Day 7 p-value is 0.9, Day 30 p-value is 0.5) and proportion of intact DNA (Day 7 p-value is 0.1, Day 30 p-value is 0.2) between the ultra-low temperature technique and conventional liquid nitrogen cryopreservation at Days 7 and 30 post thawing.
CONCLUSION: This study clearly demonstrates that short-term storage of sperm at -85°C could be a viable alternative to conventional liquid nitrogen cryopreservation at -196°C due to their comparable post-thaw results.
The aim of this study was to determine the effect of butylated hydroxytoluene (BHT), a lipid-soluble anti-oxidant added in different concentrations to the Tris egg yolk extenders on semen cytological parameters pre freezing and post thawing (motility, morphology, viability, acrosome integrity and membrane integrity) of Boer goat spermatozoa. A total of 40 ejaculates from four Boer goat bucks were collected using an artificial vagina. Ten replicates of the ejaculates were diluted with a Tris egg yolk based extender which contained various concentrations (0.5mM, 1.0mM, 2.0mM and 3.0mM) of butylated hydroxytoluene while one sample was processed without supplementation of antioxidant and served as control. The diluted semen was cooled at 4°C and loaded into the straw and then stored in liquid nitrogen. It was evident that supplementation of BHT produces positive effect in terms of motility, membrane integrity and acrosome integrity in comparison with the control group in cooled and frozen Boer goat semen. Results showed significant differences in motility, membrane integrity, acrosome integrity and viability of cooled and frozen Boer goat spermatozoa at different concentrations. Motility, membrane integrity, acrosome integrity and viability was significantly higher in all treated groups than the control group (P<0.05) while there was no significant differences (P>0.05) in morphology trait between all group in cooled semen. However, improvement (P<0.05) was observed only in terms of the membrane integrity and acrosome integrity compared to the control and other treated groups in frozen semen. In conclusion, BHT can be used in cryopreservation of Boer goat semen in order to reduce the oxidative stress on spermatozoa.
The aim of this study was to evaluate the effects of 8% virgin coconut oil (VCO) combined with different percentages of egg yolk in Tris extender on the quality of chilled and frozen-thawed bull semen. A total of 24 ejaculates from four bulls were collected using an electroejaculator. Semen samples were diluted with 8% VCO in Tris extender which contained different concentrations 0% (control), 4%, 8%, 12%, 16% and 20% egg yolk. The diluted semen samples were divided into two fractions: one was chilled and stored at 4°C until evaluation after 24, 72, and 144h; the second fraction was processed by chilling for 3h at 4°C to equilibrate, then packaged in 0.25ml straws and frozen and stored in liquid nitrogen at -196°C until evaluation after 7 and 14 days. Both chilled and frozen semen samples were then thawed at 37°C and assessed for general motility using computer-assisted semen analysis (CASA), viability, acrosome integrity, and morphology (eosin-nigrosin), membrane integrity (hypo-osmotic swelling test) and lipid peroxidation (thiobarbituric acid-reactive substances (TBARS)). The results indicate treatments with 8%, 12%, 16% and 20% egg yolk with 8% VCO had greater sperm quality (P<0.05) as compared with the control. The treatment with 20% egg yolk had the greatest sperm quality (P<0.05) among the treated groups for both chilled and frozen-thawed semen. In conclusion, the use of 8% VCO combined with 20% egg yolk in a Tris-based extender enhanced the values for chilled and frozen-thawed quality variables of bull sperm.
This study aims to assess the effect of Eurycoma longifolia aqueous extract on chilled and cryopreserved quality of bull sperm. Semen samples were obtained from four Simmental-Brangus. Each sample was divided into two fractions: the first fraction was used for chilling the semen, and the second fraction was used for the freezing process. Both fractions were extended with Tris-egg yolk extender supplemented with 0.0, 0.25, 0.5, 1.0, 2.5, 5.0, and 7.5 mg/ml Eurycoma longifolia aqueous extract. The diluted chilled fraction was chilled at 5 °C for 6 days, whereas the frozen-thawed fraction was frozen in liquid nitrogen. Data revealed that 1 mg/ml E. longifolia aqueous extract yielded significantly (p semen evaluation. For cryopreserved sperm, a significant difference (p semen and 5 mg/ml E. longifolia aqueous extract to cryopreserved sperm into Tris-egg yolk extender helps in maintaining superior quality of bull spermatozoa during chilling and freezing.
The present study was conducted to determine the effects of supplementing α-linolenic acid (ALA) into BioXcell(®) extender on post-cooling, post-thawed bovine spermatozoa and post thawed fatty acid composition. Twenty-four semen samples were collected from three bulls using an electro-ejaculator. Fresh semen samples were evaluated for general motility using computer assisted semen analyzer (CASA) whereas morphology and viability with eosin-nigrosin stain. Semen samples extended into BioXcell(®) were divided into five groups to which 0, 3, 5, 10 and 15 ng/ml of ALA were added, respectively. The treated samples were incubated at 37°C for 15 min for ALA uptake by sperm cells before being cooled for 2 h at 5°C. After evaluation, the cooled samples were packed into 0.25 ml straws and frozen in liquid nitrogen for 24 h before thawing and evaluation for semen quality. Evaluation of cooled and frozen-thawed semen showed that the percentages of all the sperm parameters improved with 5 ng/ml ALA supplement. ALA was higher in all treated groups than control groups than control group. In conclusion, 5 ng/ml ALA supplemented into BioXcell(®) extender improved the cooled and frozen-thawed quality of bull spermatozoa.
The study was conducted to evaluate the effects of α-linolenic acid (ALA) on frozen-thawed quality and fatty acid composition of bull sperm. For that, twenty-four ejaculates obtained from three bulls were diluted in a Tris extender containing 0 (control), 3, 5, 10 and 15 ng/ml of ALA. Extended semen was incubated at 37°C for 15 min, to allow absorption of ALA by sperm cell membrane. The sample was chilled for 2 h, packed into 0.25-ml straws and frozen in liquid nitrogen for 24 h. Subsequently, straws were thawed and evaluated for total sperm motility (computer-assisted semen analysis), membrane functional integrity (hypo-osmotic swelling test), viability (eosin-nigrosin), fatty acid composition (gas chromatography) and lipid peroxidation (thiobarbituric acid-reactive substances (TBARS)). A higher (p < 0.05) percentage of total sperm motility was observed in ALA groups 5 ng/ml (47.74 ± 07) and 10 ng/ml (44.90 ± 0.7) in comparison with control (34.53 ± 3.0), 3 ng/ml (34.40 ± 2.6) and 15 ng/ml (34.60 ± 2.9). Still, the 5 ng/ml ALA group presented a higher (p < 0.05) percentage of viable sperms (74.13 ± 0.8) and sperms with intact membrane (74.46 ± 09) than all other experimental groups. ALA concentration and lipid peroxidation in post-thawed sperm was higher in all treated groups when compared to the control group. As such, the addition of 5 ng/ml of ALA to Tris extender improved quality of frozen-thawed bull spermatozoa.