From 2005 to 2009, the Institute for Medical Research (IMR), Kuala Lumpur, Malaysia received 488 serum and blood samples from hospitalized patients on the East Coast of Peninsular Malaysia, suspected of having dengue infection. In this study we determined the prevailing dengue serotypes using a real time polymerase chain reaction assay (RT-PCR). All 4 dengue virus serotypes were found circulating during the study period; however the predominant serotype varied. In 2005 and 2006, the predominant serotypes circulating were DENV-1 and DENV-3, in 2007, DENV-1 and DENV-2 were predominant, and in 2008 and 2009, DENV-3 was the predominant serotype.
The purpose of this investigation was to evaluate the usefulness of a co-agglutination procedure for the typing of Flavobacterium meningosepticum. The sensitivity and specificity of the co-agglutination test was compared to the slide agglutination test using reference strains of the bacterial species. Antisera were characterized by both technics to determine their titer and working dilution. The specificity of the sera was assessed by performing tests which include strains of other species and serotypes. A collection of 47 strains of F. meningosepticum isolated from clinical specimens were typed by both co-agglutination and slide agglutination methods. Co-agglutination proved to be markedly more specific than the slide procedure although both methods were similar in sensitivity. It was concluded that co-agglutination proved to be an excellent method for the serotyping of F. meningosepticum.
The constancy of strain genotypes of multiple isolates of Burkholderia pseudomallei from 13 patients with melioidosis was examined by BamHI ribotyping and pulsed-field gel electrophoresis (PFGE) of XbaI digests of DNA. Seven of 8 patients with single episodes of melioidosis each yielded genetically identical isolates and only one of five patients with recurrent episodes was infected with a new strain clearly distinct from the original primary strain. Variation was observed in PFGE patterns of primary and relapse isolates of another patient but this was insufficient to define genetically distinct strains. We conclude that most patients with single or multiple episodes of melioidosis retain a single strain.
Determination of Streptococcus pneumoniae serotypes is essential for epidemiological surveillance. Therefore accurate, reliable and cost effective serotyping method is crucial. In this study, we determined the serotypes of 41 pneumococcal isolates recovered from human anterior nares by multiplex Polymerase Chain Reaction (PCR) utilizing published primers. The data was then compared with conventional serology using latex agglutination (LA) and the Quellung reaction. Based on the PCR-approach, 8 different serogroups/serotypes were detected with one isolate classified as non-typeable (cpsA-negative). In reference to the serology-based data, the results were in agreement except for one isolate. For the latter isolate, the LA and Quellung tests failed to show a reaction but the PCR-approach and sequencing identified the isolate as serogroup 15B/C. Based on this experimental setting, we found that the PCR-approach for pneumococcal serotypes determination is reliable to serve as the alternative for determining the pneumococcal serotyping.
The inherent ability of nucleic acids to recognize a complementary pair has gained wide popularity in DNA sensor applications. DNA molecules can be produced in bulk and easily incorporated with various nanomaterials for sensing applications. More complex designs and sophisticated DNA sensors have been reported over the years to allow DNA detection in a faster, cheaper, and more convenient manner. Here, we report a DNA sensor designed to function like a switch to turn "on" silver nanocluster (AgNC) generation in the presence of a specific DNA target. By defining the probe region sequence, we are able to tune the color of the AgNC generated in direct relation to the different targets. As a proof of concept, we used dengue RNA-dependent RNA polymerase conserved sequences from all four serotypes as targets. This method was able to distinguish each dengue serotype by generating the serotype-respective AgNCs. The DNA switch was also able to identify and amplify the correct target in a mixture of targets with good specificity. This strategy has a detection limit of between 1.5 and 2.0 µM depending on the sequence of AgNC. The DNA switch approach provides an attractive alternative for single-target or multiplex DNA detection.
The VP4 genetic groups of 151 field strains of human rotaviruses obtained from infants and young children with diarrhea from four locations in Malaysia were analyzed. The strains were adapted to growth in tissue culture and studied further by molecular hybridization of northern blotted RNA to PCR-generated cDNA probes representing amino acids 84-180 of the KU strain VP4, 83-181 of the DS-1 strain VP4, and 83-180 of either the 1076 or K8 strain VP4, representing VP4 genetic groups 1-4 (P1A, P1B, P2, and P3), respectively. The majority (79% of the field strains hybridized with the KU VP4 genetic group 1 probe and were associated with G1, G3, G4, untypable, or mixed G serotypes. VP4 genetic group 1 (P1A) strains were the most common in all locations in Malaysia between 1978-1988. Three strains which exhibited G3 and subgroup I specificity hybridized with the K8 VP4 genetic group 4 probe. These three VP4 genetic group 4 (P3) strains were detected in two different years and locations, extending the initial detection of this VP4 genetic group (the K8 strain) in Japan to a larger geographical area of Asia.
This study describes the use of polymerase chain reaction as a diagnostic tool for detecting and typing of dengue virus. PCR was compared against virus isolation. First RT-PCR was done using dengue consensus primers after which positive samples were subjected to RT-PCR using type-specific primers. This study shows that the local strains of the dengue virus could be detected using the chosen primers. Furthermore, RT-PCR was found to be more sensitive than virus isolation in identifying the dengue positive samples.
The use of the polymerase chain reaction (PCR) in molecular diagnosis is now accepted worldwide and has become an essential tool in the research laboratory. In the laboratory, a rapid detection, serotyping and quantitation, one-step real-time RT-PCR assay was developed for dengue virus using TaqMan probes. In this assay, a set of forward and reverse primers were designed targeting the serotype conserved region at the NS5 gene, at the same time flanking a variable region for all four serotypes which were used to design the serotype-specific TaqMan probes. This multiplex one-step RT-PCR assay was evaluated using 376 samples collected during the year 2003. These groups included RNA from prototype dengue virus (1-4), RNA from acute serum from which dengue virus was isolated, RNA from tissue culture supernatants of dengue virus isolated, RNA from seronegative acute samples (which were culture and IgM negative) and RNA from samples of dengue IgM positive sera. The specificity of this assay was also evaluated using a panel of sera which were positive for other common tropical disease agents including herpes simplex virus, cytomegalovirus, measles virus, varicella-zoster virus, rubella virus, mumps virus, WWF, West Nile virus, Japanese encephalitis virus, S. typhi, Legionella, Leptospira, Chlamydia, and Mycoplasma. The sensitivity, specificity and real-time PCR efficiency of this assay were 89.54%, 100% and 91.5%, respectively.