We report significant enhancements in Er(3+) luminescence as well as in Raman intensity in silver nanoparticles embedded zinc-tellurite glass. Surface enhanced Raman scattering effect is highlighted for the first time in tellurite glass containing silver NPs resulting in an enhanced Raman signal (~10 times). SAED manifest the growth of Ag(0) nanoparticles along the (111) and (200) crystallographic planes having average diameter in the range 14-36 nm. Surface plasmon resonance bands are observed in the range 484-551 nm. Furthermore, four prominent photoluminescence bands undergo significant enhancements up to 3 times. The enhancement is majorly attributed to the local field effect of silver NPs.
In this work, natural sunlight successfully induced the deposition of gold (Au), silver (Ag), and palladium (Pd) nanoparticles (NPs) with 17.10, 9.07, and 12.70 wt% onto the surface of graphitic carbon nitride (g-C3N4). The photocatalytic evaluation was carried out by adopting Bisphenol A (BPA) as a pollutant under natural sunlight irradiation. The presence of noble metals was confirmed by EDX, HRTEM, and XPS analysis. The deposition of Ag NPs (7.9 nm) resulted in the degradation rate which was 2.15-fold higher than pure g-C3N4 due to its relatively small particle size, contributing to superior charge separation efficiency. Au/g-C3N4 unveiled inferior photoactivity because the LSPR phenomenon provided two pathways for electron transfer between Au NPs and g-C3N4 further diminished the performance. The improved degradation lies crucially on the particle size and Schottky barrier formation at the interface of M/g-C3N4 (M=Au, Ag, and Pd) but not the visible light harvesting properties. The mechanism insight revealed the holes (h+) and superoxide radical (•O2-) radical actively involved in photocatalytic reaction for all composites.
In the present study, the novel Ag/cellulose nanocrystal (CNC)-doped CeO2 quantum dots (QDs) with highly efficient catalytic performance were synthesized using one pot co-precipitation technique, which were then applied in the degradation of methylene blue and ciprofloxacin (MBCF) in wastewater. Catalytic activity against MBCF dye was significantly reduced (99.3%) for (4%) Ag dopant concentration in acidic medium. For Ag/CNC-doped CeO2 vast inhibition domain of G-ve was significantly confirmed as (5.25-11.70 mm) and (7.15-13.60 mm), while medium- to high-concentration of CNC levels were calculated for G + ve (0.95 nm, 1.65 mm), respectively. Overall, (4%) Ag/CNC-doped CeO2 revealed significant antimicrobial activity against G-ve relative to G + ve at both concentrations, respectively. Furthermore, in silico molecular docking studies were performed against selected enzyme targets dihydrofolate reductase (DHFR), dihydropteroate synthase (DHPS), and DNA gyrase belonging to folate and nucleic acid biosynthetic pathway, respectively to rationalize possible mechanism behind bactericidal potential of CNC-CeO2 and Ag/CNC-CeO2.