METHODS: Thirty-two female Sprague Dawley rats at age 21-days old were administered intraperitoneally with N-Methyl-N-Nitroso Urea (NMU), dosed at 70mg/kg body weight. The rats were divided into 4 groups; Group 1 (Control, n=8), Group 2 (Sirolimus, n=8), Group 3 (Sunitinib, n=8) and Group 4 (Sirolimus+Sunitinib, n=8), being treated twice when the tumor reached the size of 14.5±0.5 mm and subsequently sacrificed after 5 days. The protein expressions of ER, PgR and HER2/neu of the tumor tissues were evaluated by using immunohistochemistry analysis.
RESULTS: Treatment with sirolimus alone lowered expressions of ER and PgR of breast cancer and reduced tumor size. There was no significant difference of ER and PgR expressions between control and sunitinib treated tumor. Sunitinib treated tumors reduce in diameter after the first treatment, however the diameter increases after the second treatment. Histologically, sunitinib treated tumor did not show any aggressive invasive carcinoma of no special type (NST) histological subtypes. In addition, all NMU-induced tumors are HER2/neu-negative scoring.
CONCLUSION: Sirolimus is neither synergistic nor additive with sunitinib for breast cancer treatment.
.
METHODS: In an international, randomized, single-blind trial, we compared polymer-based zotarolimus-eluting stents with polymer-free umirolimus-coated stents in patients at high bleeding risk. After PCI, patients were treated with 1 month of dual antiplatelet therapy, followed by single antiplatelet therapy. The primary outcome was a safety composite of death from cardiac causes, myocardial infarction, or stent thrombosis at 1 year. The principal secondary outcome was target-lesion failure, an effectiveness composite of death from cardiac causes, target-vessel myocardial infarction, or clinically indicated target-lesion revascularization. Both outcomes were powered for noninferiority.
RESULTS: A total of 1996 patients at high bleeding risk were randomly assigned in a 1:1 ratio to receive zotarolimus-eluting stents (1003 patients) or polymer-free drug-coated stents (993 patients). At 1 year, the primary outcome was observed in 169 of 988 patients (17.1%) in the zotarolimus-eluting stent group and in 164 of 969 (16.9%) in the polymer-free drug-coated stent group (risk difference, 0.2 percentage points; upper boundary of the one-sided 97.5% confidence interval [CI], 3.5; noninferiority margin, 4.1; P = 0.01 for noninferiority). The principal secondary outcome was observed in 174 patients (17.6%) in the zotarolimus-eluting stent group and in 169 (17.4%) in the polymer-free drug-coated stent group (risk difference, 0.2 percentage points; upper boundary of the one-sided 97.5% CI, 3.5; noninferiority margin, 4.4; P = 0.007 for noninferiority).
CONCLUSIONS: Among patients at high bleeding risk who received 1 month of dual antiplatelet therapy after PCI, use of polymer-based zotarolimus-eluting stents was noninferior to use of polymer-free drug-coated stents with regard to safety and effectiveness composite outcomes. (Funded by Medtronic; ONYX ONE ClinicalTrials.gov number, NCT03344653.).
BACKGROUND: Drug-eluting stents have limited restenosis and reintervention but are complicated by late and very late thrombosis and accelerated neoatherosclerosis. Alternative or adjunctive technologies are needed to address these limitations.
METHODS: A total of 183 patients with de novo lesions in native coronary arteries were randomized 2:1 to Combo (n = 124) or Taxus Liberté (n = 59). Primary endpoint was 9 month angiographic in-stent late lumen loss and the secondary endpoint was the occurrence of major adverse events (MACE) through 5-year follow-up.
RESULTS: Compared with Taxus, after 5 years the Combo stent was associated with similar rates of MACE (18.3% vs. 16.9%, p = .89), cardiac death (0.8% vs. 5.1%, p = .07), myocardial infarction (4.1% vs. 3.4%, p = .81), target lesion (9.4% vs. 10.2%, p = .78), and target vessel revascularization (14.4% vs. 11.9%, p = .73). No cases of definite stent thrombosis were reported in the Combo group. The follow-up rate at 5 years was 97.7%.
CONCLUSION: At 5-year follow-up, the Combo stent remained clinically safe and effective with an overall low rate of MACE comparable to Taxus.
BACKGROUND: Few data regarding the safety and effectiveness of self-apposing sirolimus-eluting Stentys stent are available.
METHODS: 278 patients (30% stable coronary artery disease, 70% acute coronary syndromes, and 54% on unprotected left main) treated with sirolimus eluting Stentys stent were retrospectively included in the self-aPposing, bAlloon-delivered, siRolimus-eluting stent for the Treatment of the coronary Artery disease multicenter registry. Major adverse cardiovascular events (MACE, a composite of cardiac death, myocardial infarction, target lesion revascularization, stent thrombosis) were the primary end-point, single components of MACE were the secondary ones.
RESULTS: After 13 months (interquartile range 5-32), MACE was 14%. Stent thrombosis occurred in 3.9% of the patients (2.5% definite stent thrombosis and 1.4% probable stent thrombosis), 66% of them presenting with ST-segment elevation myocardial infarction (STEMI) at admission. Cardiovascular death, target lesion revascularization and myocardial infarction was 4.7%, 8.3%, and 7.2%, respectively. At multivariate analysis, risk of MACE was increased by diabetes (hazard ratios 4.76; P = 0.002) but was not affected by the indication leading to sirolimus-eluting Stentys stent implantation (marked vessel tapering vs. coronary ecstasies, hazard ratios 0.74, P = 0.71).
CONCLUSION: Sirolimus-eluting Stentys stent may represent a potential solution for specific coronary anatomies such as bifurcation, ectasic, or tapered vessels. Risk of stent thrombosis appears related to clinical presentation with STEMI and to anatomic features, stressing the importance of the use of intracoronary imaging for self-expandable stents implantation.
BACKGROUND: The current generation of bioresorbable scaffolds has several limitations, such as thick square struts with large footprints that preclude their deep embedment into the vessel wall, resulting in protrusion into the lumen with microdisturbance of flow. The Mirage sirolimus-eluting bioresorbable microfiber scaffold is designed to address these concerns.
METHODS: In this prospective, single-blind trial, 60 patients were randomly allocated in a 1:1 ratio to treatment with a Mirage sirolimus-eluting bioresorbable microfiber scaffold or an Absorb bioresorbable vascular scaffold. The clinical endpoints were assessed at 30 days and at 6 and 12 months. In-device angiographic late loss at 12 months was quantified. Secondary optical coherence tomographic endpoints were assessed post-scaffold implantation at 6 and 12 months.
RESULTS: Median angiographic post-procedural in-scaffold minimal luminal diameters of the Mirage and Absorb devices were 2.38 mm (interquartile range [IQR]: 2.06 to 2.62 mm) and 2.55 mm (IQR: 2.26 to 2.71 mm), respectively; the effect size (d) was -0.29. At 12 months, median angiographic in-scaffold minimal luminal diameters of the Mirage and Absorb devices were not statistically different (1.90 mm [IQR: 1.57 to 2.31 mm] vs. 2.29 mm [IQR: 1.74 to 2.51 mm], d = -0.36). At 12-month follow-up, median in-scaffold late luminal loss with the Mirage and Absorb devices was 0.37 mm (IQR: 0.08 to 0.72 mm) and 0.23 mm (IQR: 0.15 to 0.37 mm), respectively (d = 0.20). On optical coherence tomography, post-procedural diameter stenosis with the Mirage was 11.2 ± 7.1%, which increased to 27.4 ± 12.4% at 6 months and remained stable (31.8 ± 12.9%) at 1 year, whereas the post-procedural optical coherence tomographic diameter stenosis with the Absorb was 8.4 ± 6.6%, which increased to 16.6 ± 8.9% and remained stable (21.2 ± 9.9%) at 1-year follow-up (Mirage vs. Absorb: dpost-procedure = 0.41, d6 months = 1.00, d12 months = 0.92). Angiographic median in-scaffold diameter stenosis was significantly different between study groups at 12 months (28.6% [IQR: 21.0% to 40.7%] for the Mirage, 18.2% [IQR: 13.1% to 31.6%] for the Absorb, d = 0.39). Device- and patient-oriented composite endpoints were comparable between the 2 study groups.
CONCLUSIONS: At 12 months, angiographic in-scaffold late loss was not statistically different between the Mirage and Absorb devices, although diameter stenosis on angiography and on optical coherence tomography was significantly higher with the Mirage than with the Absorb. The technique of implantation was suboptimal for both devices, and future trials should incorporate optical coherence tomographic guidance to allow optimal implantation and appropriate assessment of the new technology, considering the novel mechanical properties of the Mirage.
BACKGROUND: SES may provide a valuable option to treat distal ULM, particularly when significant caliber gaps with side branches are observed.
METHODS: Patients from the multicenter SPARTA (clinicaltrials.gov: NCT02784405) and FAILS2 registries were included. Propensity-score with matching was performed to account for the lack of randomization. Primary end-point was the rate of major adverse cardiovascular events (MACE, a composite of all cause death, myocardial infarction, target lesion revascularization [TLR], unstable angina and definite stent thrombosis [ST]). Single components of MACE were the secondary end-points.
RESULTS: Overall, 151 patients treated with SES and 1270 with DES-II were included; no differences in MACE rate at 250 days were observed (9.8% vs. 11.5%, P = 0.54). After propensity score with matching, 129 patients treated with SES and 258 with DES-II, of which about a third of female gender, were compared. After a follow-up of 250 days, MACE rate did not differ between the two groups (9.9% vs. 8.5%, P = 0.66), as well as the rate of ULM TLR (1.6% vs. 3.1%, P = 0.36) and definite ST (0.8% vs. 1.2%, P = 0.78). These results were consistent also when controlling for the treatment with provisional vs. 2-stents strategies for the ULM bifurcation.
CONCLUSION: SES use for ULM treatment was associated with a similar MACE rate compared to DES-II at an intermediate-term follow-up. SES might represent a potential option in this setting.
BACKGROUND: Treatment of coronary in-stent restenosis (ISR) remains challenging. PCBs are an established treatment option outside the United States with a Class I, Level of Evidence: A recommendation in the European guidelines. However, their efficacy is better in bare-metal stent (BMS) ISR compared with drug-eluting stent (DES) ISR.
METHODS: Fifty patients with DES ISR were enrolled in a randomized, multicenter trial to compare a novel SCB (SeQuent SCB, 4 μg/mm2) with a clinically proven PCB (SeQuent Please Neo, 3 μg/mm2) in coronary DES ISR. The primary endpoint was angiographic late lumen loss at 6 months. Secondary endpoints included procedural success, major adverse cardiovascular events, and individual clinical endpoints such as stent thrombosis, cardiac death, target lesion myocardial infarction, clinically driven target lesion revascularization, and binary restenosis.
RESULTS: Quantitative coronary angiography revealed no differences in baseline parameters. After 6 months, in-segment late lumen loss was 0.21 ± 0.54 mm in the PCB group versus 0.17 ± 0.55 mm in the SCB group (p = NS; per-protocol analysis). Clinical events up to 12 months also did not differ between the groups.
CONCLUSIONS: This first-in-man comparison of a novel SCB with a crystalline coating shows similar angiographic outcomes in the treatment of coronary DES ISR compared with a clinically proven PCB. (Treatment of Coronary In-Stent Restenosis by a Sirolimus [Rapamycin] Coated Balloon or a Paclitaxel Coated Balloon [FIM LIMUS DCB]; NCT02996318).
METHODS: Patient-level data from two all-comers observational studies (ClinicalTrials.gov Identifiers: NCT02629575 and NCT02905214) were pooled and analyzed in terms of their primary endpoint. During the data verification process, we observed substantial deviations from DAPT guideline recommendations. To illuminate this gap between clinical practice and guideline recommendations, we conducted a post hoc analysis of DAPT regimens and clinical event rates for which we defined the net adverse event rate (NACE) consisting of target lesion revascularization (TLR, primary endpoint of all-comers observational studies) all-cause death, myocardial infarction (MI), stent thrombosis (ST), and bleeding events. A logistic regression was utilized to determine predictors why ticagrelor was used in stable coronary artery disease (CAD) patients instead of the guideline-recommended clopidogrel.
RESULTS: For stable CAD, the composite endpoint of clinical, bleeding, and stent thrombosis, i.e., NACE, between the clopidogrel and ticagrelor treatment groups was not different (5.4% vs. 5.1%, p = 0.745). Likewise, in the acute coronary syndrome (ACS) cohort, the NACE rates were not different between both DAPT strategies (9.2% vs. 9.3%, p = 0.927). There were also no differences in the accumulated rates for TLR, myocardial infarction ([MI], mortality, bleeding events, and stent thrombosis in elective and ACS patients. The main predictors for ticagrelor use in stable CAD patients were age
BACKGROUND: Recently published randomized trials comparing BMS to DES with a focus on shortened dual-antiplatelet therapy reported incidences of stent thrombosis (ST) and bleeding complications (LEADERS FREE) in favor of drug eluting stents (DES).
METHODS: Data of previously published large-sale, international, single-armed, multicenter, observational studies of ultra-thin PF-SES, and BMS were propensity score (PS) matched for selected lesion morphological and cardiovascular risk factors to compare target lesion revascularization (TLR), myocardial infarction, cardiac death, major adverse cardiac events (MACE), bleeding complications and ST rates. Primary endpoint in both studies was TLR at 9 months.
RESULTS: At 9 months the rates of TLR was significantly lower in the PF-SES group as compared with patients treated with the BMS analogue of identical stent design (1.4% vs. 4.6%, P = 0.005). Likewise the 9-month MACE rates were lower in the PF-SES group (3.2% vs. 8.7%, P = 0.001) whereas there were no differences in the accumulated ST rates (0.5% vs. 1.5%, P = 0.109). Overall accumulated bleeding incidences (BARC 1-5) were not significantly different between PF-SES and BMS patients (1.8% vs. 2.7%, p = 0.388).
CONCLUSIONS: PF-SES are superior over analogue BMS of identical stent architecture in daily clinical routine with lower rates of TLR and MACE in a PS-matched, unselected patient population without differences in accumulated ST rates and bleeding frequencies given the currently favored postprocedural comedication (ClinicalTrials.gov Identifier NCT02629575).