Displaying all 6 publications

Abstract:
Sort:
  1. Sahayadhas A, Sundaraj K, Murugappan M
    Sensors (Basel), 2012 Dec 07;12(12):16937-53.
    PMID: 23223151 DOI: 10.3390/s121216937
    In recent years, driver drowsiness has been one of the major causes of road accidents and can lead to severe physical injuries, deaths and significant economic losses. Statistics indicate the need of a reliable driver drowsiness detection system which could alert the driver before a mishap happens. Researchers have attempted to determine driver drowsiness using the following measures: (1) vehicle-based measures; (2) behavioral measures and (3) physiological measures. A detailed review on these measures will provide insight on the present systems, issues associated with them and the enhancements that need to be done to make a robust system. In this paper, we review these three measures as to the sensors used and discuss the advantages and limitations of each. The various ways through which drowsiness has been experimentally manipulated is also discussed. We conclude that by designing a hybrid drowsiness detection system that combines non-intrusive physiological measures with other measures one would accurately determine the drowsiness level of a driver. A number of road accidents might then be avoided if an alert is sent to a driver that is deemed drowsy.
    Matched MeSH terms: Sleep Stages/physiology*
  2. Mousavi Z, Yousefi Rezaii T, Sheykhivand S, Farzamnia A, Razavi SN
    J Neurosci Methods, 2019 08 01;324:108312.
    PMID: 31201824 DOI: 10.1016/j.jneumeth.2019.108312
    Using a smart method for automatic diagnosis in medical applications, such as sleep stage classification is considered as one of the important challenges of the last few years which can replace the time-consuming process of visual inspection done by specialists. One of the problems regarding the automatic diagnosis of sleep patterns is extraction and selection of discriminative features generally demanding high computational burden. This paper provides a new single-channel approach to automatic classification of sleep stages from EEG signal. The main idea is to directly apply the raw EEG signal to deep convolutional neural network, without involving feature extraction/selection, which is a challenging process in the previous literature. The proposed network architecture includes 9 convolutional layers followed by 2 fully connected layers. In order to make the samples of different classes balanced, we used a preprocessing method called data augmentation. The simulation results of the proposed method for classification of 2 to 6 classes of sleep stages show the accuracy of 98.10%, 96.86%, 93.11%, 92.95%, 93.55% and Cohen's Kappa coefficient of 0.98%, 0.94%, 0.90%, 0.86% and 0.89%, respectively. Furthermore, comparing the obtained results with the state-of-the-art methods reveals the performance improvement of the proposed sleep stage classification in terms of accuracy and Cohen's Kappa coefficient.
    Matched MeSH terms: Sleep Stages/physiology*
  3. Michielli N, Acharya UR, Molinari F
    Comput Biol Med, 2019 03;106:71-81.
    PMID: 30685634 DOI: 10.1016/j.compbiomed.2019.01.013
    Automated evaluation of a subject's neurocognitive performance (NCP) is a relevant topic in neurological and clinical studies. NCP represents the mental/cognitive human capacity in performing a specific task. It is difficult to develop the study protocols as the subject's NCP changes in a known predictable way. Sleep is time-varying NCP and can be used to develop novel NCP techniques. Accurate analysis and interpretation of human sleep electroencephalographic (EEG) signals is needed for proper NCP assessment. In addition, sleep deprivation may cause prominent cognitive risks in performing many common activities such as driving or controlling a generic device; therefore, sleep scoring is a crucial part of the process. In the sleep cycle, the first stage of non-rapid eye movement (NREM) sleep or stage N1 is the transition between wakefulness and drowsiness and becomes relevant for the study of NCP. In this study, a novel cascaded recurrent neural network (RNN) architecture based on long short-term memory (LSTM) blocks, is proposed for the automated scoring of sleep stages using EEG signals derived from a single-channel. Fifty-five time and frequency-domain features were extracted from the EEG signals and fed to feature reduction algorithms to select the most relevant ones. The selected features constituted as the inputs to the LSTM networks. The cascaded architecture is composed of two LSTM RNNs: the first network performed 4-class classification (i.e. the five sleep stages with the merging of stages N1 and REM into a single stage) with a classification rate of 90.8%, and the second one obtained a recognition performance of 83.6% for 2-class classification (i.e. N1 vs REM). The overall percentage of correct classification for five sleep stages is found to be 86.7%. The objective of this work is to improve classification performance in sleep stage N1, as a first step of NCP assessment, and at the same time obtain satisfactory classification results in the other sleep stages.
    Matched MeSH terms: Sleep Stages/physiology*
  4. Sharma M, Goyal D, Achuth PV, Acharya UR
    Comput Biol Med, 2018 07 01;98:58-75.
    PMID: 29775912 DOI: 10.1016/j.compbiomed.2018.04.025
    Sleep related disorder causes diminished quality of lives in human beings. Sleep scoring or sleep staging is the process of classifying various sleep stages which helps to detect the quality of sleep. The identification of sleep-stages using electroencephalogram (EEG) signals is an arduous task. Just by looking at an EEG signal, one cannot determine the sleep stages precisely. Sleep specialists may make errors in identifying sleep stages by visual inspection. To mitigate the erroneous identification and to reduce the burden on doctors, a computer-aided EEG based system can be deployed in the hospitals, which can help identify the sleep stages, correctly. Several automated systems based on the analysis of polysomnographic (PSG) signals have been proposed. A few sleep stage scoring systems using EEG signals have also been proposed. But, still there is a need for a robust and accurate portable system developed using huge dataset. In this study, we have developed a new single-channel EEG based sleep-stages identification system using a novel set of wavelet-based features extracted from a large EEG dataset. We employed a novel three-band time-frequency localized (TBTFL) wavelet filter bank (FB). The EEG signals are decomposed using three-level wavelet decomposition, yielding seven sub-bands (SBs). This is followed by the computation of discriminating features namely, log-energy (LE), signal-fractal-dimensions (SFD), and signal-sample-entropy (SSE) from all seven SBs. The extracted features are ranked and fed to the support vector machine (SVM) and other supervised learning classifiers. In this study, we have considered five different classification problems (CPs), (two-class (CP-1), three-class (CP-2), four-class (CP-3), five-class (CP-4) and six-class (CP-5)). The proposed system yielded accuracies of 98.3%, 93.9%, 92.1%, 91.7%, and 91.5% for CP-1 to CP-5, respectively, using 10-fold cross validation (CV) technique.
    Matched MeSH terms: Sleep Stages/physiology*
  5. Sahayadhas A, Sundaraj K, Murugappan M
    Australas Phys Eng Sci Med, 2013 Jun;36(2):243-50.
    PMID: 23719977 DOI: 10.1007/s13246-013-0200-6
    Driver drowsiness has been one of the major causes of road accidents that lead to severe trauma, such as physical injury, death, and economic loss, which highlights the need to develop a system that can alert drivers of their drowsy state prior to accidents. Researchers have therefore attempted to develop systems that can determine driver drowsiness using the following four measures: (1) subjective ratings from drivers, (2) vehicle-based measures, (3) behavioral measures and (4) physiological measures. In this study, we analyzed the various factors that contribute towards drowsiness. A total of 15 male subjects were asked to drive for 2 h at three different times of the day (00:00-02:00, 03:00-05:00 and 15:00-17:00 h) when the circadian rhythm is low. The less intrusive physiological signal measurements, ECG and EMG, are analyzed during this driving task. Statistically significant differences in the features of ECG and sEMG signals were observed between the alert and drowsy states of the drivers during different times of day. In the future, these physiological measures can be fused with vision-based measures for the development of an efficient drowsiness detection system.
    Matched MeSH terms: Sleep Stages/physiology*
  6. Willoughby AR, de Zambotti M, Baker FC, Colrain IM
    Alcohol, 2020 May;84:1-7.
    PMID: 31539623 DOI: 10.1016/j.alcohol.2019.09.005
    There is evidence for impairment in both central nervous system (CNS) and autonomic nervous system (ANS) function with prolonged alcohol use. While these impairments persist into abstinence, partial recovery of function has been demonstrated in both systems during sleep. To investigate potential ANS dysfunction associated with cortical CNS responses (impairment in CNS-ANS coupling), we assessed phasic heart rate (HR) fluctuation associated with tones that did and those that did not elicit a K-complex (KC) during stable N2 non-rapid eye movement (NREM) sleep in a group of 16 recently abstinent alcohol use disorder (AUD) patients (41.6 ± 8.5 years) and a group of 13 sex- and age-matched control participants (46.6 ± 9.3 years). Electroencephalogram (EEG) and electrocardiogram (ECG) data were recorded throughout the night. Alcohol consumption questionnaires were also administered to the AUD patients. AUD patients had elevated HR compared to controls at baseline prior to tone presentation. The HR fluctuation associated with KCs elicited by tone presentation was significantly smaller in amplitude, and tended to be delayed in time, in the AUD group compared with the control group, and the subsequent deceleration was also smaller in AUD patients. In both groups, the increase in HR was larger and occurred earlier when KCs were produced than when they were not, and there was no difference in the magnitude of the KC effect between groups. Phasic HR changes associated with KCs elicited by tones are impaired in AUD participants, reflecting ANS dysfunction possibly caused by an alteration of cardiac vagal trafficking. However, only the timing of the HR response was found to relate to estimated lifetime alcohol consumption in AUD. The clinical meaning and implications of these novel findings need to be determined.
    Matched MeSH terms: Sleep Stages/physiology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links