Bleeding following bites by the Malayan Pit Viper can either be local or systemic. Bleeding at the site of the bite is due to the local action of the venom as a vasculotoxin. Systemic bleeding occurs with severe poisoning and appears to be mainly dependent on platelet deficiency and the co-existing defibrination syndrome appears to play a minor role in the initiation of bleeding. Thus in the clinical situation non-clotting blood with no overt bleeding can continue up to weeks when specific antivenene is not given. Assessment of the severity of poisoning can easily be made at the bedside. Specific viper antivenene rapidly corrects the spontaneous bleeding and clotting defect of severe systemic poisoning but has no effect on local poisoning.
The treatment protocol of antivenom in snake envenomation remains largely empirical, partly due to the insufficient knowledge of the pharmacokinetics of snake venoms and the effects of antivenoms on the blood venom levels in victims. In this study, we investigated the effect of a polyvalent antivenom on the serum venom antigen levels of Naja sputatrix (Javan spitting cobra) venom in experimentally envenomed rabbits. Intravenous infusion of 4 ml of Neuro Polyvalent Snake Antivenom [NPAV, F(ab')2 ] at 1 hr after envenomation caused a sharp decline of the serum venom antigen levels, followed by transient resurgence an hour later. The venom antigen resurgence was unlikely to be due to the mismatch of pharmacokinetics between the F(ab')2 and venom antigens, as the terminal half-life and volume of distribution of the F(ab')2 in serum were comparable to that of venom antigens (p > 0.05). Infusion of an additional 2 ml of NPAV was able to prevent resurgence of the serum venom antigen level, resulting in a substantial decrease (67.1%) of the total amount of circulating venom antigens over time course of envenomation. Our results showed that the neutralization potency of NPAV determined by neutralization assay in mice may not be an adequate indicator of its capability to modulate venom kinetics in relation to its in vivo efficacy to neutralize venom toxicity. The findings also support the recommendation of giving high initial dose of NPAV in cobra envenomation, with repeated doses as clinically indicated in the presence of rebound antigenemia and symptom recurrence.