METHODS: Different volumes of NaOCl were added to CHX (mix 1) or PCA (mix 2). Upon centrifugation, the supernatant and precipitate fractions collected from samples were analyzed using high-performance liquid chromatography. The cytotoxic effects of both fractions were examined on human periodontal ligament and 3T3 fibroblast cell lines.
RESULTS: High-performance liquid chromatographic analysis showed no PCA signal when NaOCl was mixed with CHX (mix 1). In mix 2, the intensity of PCA was decreased when NaOCl was added to PCA, and chromatographic signals, similar to that of CHX/NaOCl, were also observed. The mortality of precipitates exerted on both cell lines was lower compared with that of supernatants.
CONCLUSIONS: The discrepancy in the data from the literature could be caused by the instability of the PCA in the presence of NaOCl. The CHX/NaOCl reaction mixture exhibits a wide range of cytotoxic effects.
RESULTS: Minimal inhibitory concentration was determined at 0.625% of the concentration of ACV against S. mutans and E. faecalis and 1.25% of the concentration of ACV against L. casei with two-fold serial dilutions. A concentration of 5 × 10-1% with 10-fold serial dilutions was found to be the MIC value for all three bacteria. No significant differences were found when compared with the positive control (NaOCl) (p = 0.182, p = 0.171, and p = 0.234), respectively, for two-fold serial dilutions and (p = 1.000, p = 0.658, and p = 0.110), respectively for 10-fold serial dilutions. MBC was observed to be 5% ACV for both E. faecalis and S. mutans. However, positive microbial growth was observed on the agar plate when cultured with L. casei. An independent sample t-test showed no significant differences (p > 0.05) in the antimicrobial activities between 5% ACV and 5% pure AA. TEM revealed cell wall and cytoplasmic membrane disruptions on all three bacteria at MIC value.
CONCLUSION: Apple cider vinegar has antimicrobial activities against Enterococcus faecalis, Streptococcus mutans, and Lactobacillus casei at their respective MIC values.
CLINICAL SIGNIFICANCE: Apple cider vinegar can be an alternative antimicrobial dental pulp disinfectant to sodium hypochlorite. Apple cider vinegar can be used safely, especially in children's dental pulp therapy and deep caries management, when adequate tooth isolation is not readily achievable. Thus, adverse reactions commonly associated with other frequently used chemical disinfectants can be avoided.
METHODS: Eighty-two extracted premolar teeth with single canals, infected with Enterococcus faecalis (E. faecalis) and cultured for two weeks, were randomly assigned to four groups: negative control, 4% sodium hypochlorite (NaOCl), 60 s HIFU, and 120 s HIFU (operated at 250 kHz/20W). Post-treatment, biofilm samples were collected from the root canals to assess viable bacterial cells using colony-forming unit (CFU) and 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assays. The root canal surfaces were subsequently examined using scanning electron microscopy, confocal laser scanning microscopy (CLSM), microhardness, and Raman spectroscopy. Acoustic wave penetration, distribution, and temperature changes within the RCS were examined using CLSM and thermal camera.
RESULTS: HIFU at 60 s and 120 s consistently demonstrated superior anti-bacterial efficacy against E. faecalis biofilms compared to 4% NaOCl. MTT and CFU assays revealed a significant reduction in biofilm viability, particularly at 120 s of HIFU exposure (p<0.05). CLSM and SEM analyses demonstrated enhanced penetration and detachment of biofilms, as well as improved smear layer removal and preservation of dentinal tubules, especially at 120 s of HIFU exposure. HIFU treatment did not adversely affect the amide/mineral content of root dentine or its surface microhardness. Additionally, HIFU enhanced acoustic wave propagation and resulted in a controlled increase in temperature within the root canal over time.
CONCLUSION: This minimally invasive approach shows promise for removing bacterial biofilms in the RCS, positioning HIFU as a valuable adjunctive treatment for enhancing root canal disinfection. (EEJ-2024-08-123).
METHODS: One hundred and twenty posterior teeth had their occlusal enamel removed, then the specimens were divided into two main groups according to dentin substrates; SoD and CID, three subgroups according to pretreatments protocols control (no pretreatment), NaOCl-treated, and Er, Cr:YSGG-treated and two divisions according to antioxidant application (with and without sodium ascorbate (SA) application). All-Bond Universal (ABU) universal adhesives was applied in self-etch (SE) mode then resin composite discs were built. The specimens were stored in distilled water for 24-hr at 37°C before SBS testing. Three-way ANOVA and Tukey HSD tests were used for data analysis (a = 0.05).
RESULTS: 6% NaOCl resulted in a significant reduction in SBS in SoD without antioxidant application. 10% SA application showed significant increase in SBS for 6% NaOCl group only in SoD. Laser application recorded a significantly higher SBS compared to 6% NaOCl group without or with antioxidant application, while 10% SA application revealed a significant increase in SBS for control group only.
CONCLUSIONS: Er, Cr:YSGG laser irradiation followed by antioxidant application has the potential to enhance the bonding quality of both tested dentin substrates. NaOCl application has significantly compromised the bonding to SoD and CID substrates.