Displaying all 3 publications

Abstract:
Sort:
  1. Wan Ibrahim WA, Farhani H, Sanagi MM, Aboul-Enein HY
    J Chromatogr A, 2010 Jul 23;1217(30):4890-7.
    PMID: 20561627 DOI: 10.1016/j.chroma.2010.05.050
    A new sol-gel hybrid coating, polydimethylsiloxane-2-hydroxymethyl-18-crown-6 (PDMS-2OHMe18C6) was prepared in-house for use in solid phase microextraction (SPME). The three compositions produced were assessed for its extraction efficiency towards three selected organophosphorus pesticides (OPPs) based on peak area extracted obtained from gas chromatography with electron capture detection. All three compositions showed superior extraction efficiencies compared to commercial 100 microm PDMS fiber. The composition showing best extraction performance was used to obtain optimized SPME conditions: 75 degrees C extraction temperature, 10 min extraction time, 120 rpm stirring rate, desorption time 5 min, desorption temperature 250 degrees C and 1.5% (w/v) of NaCl salt addition. The method detection limits (S/N=3) of the OPPs with the new sol-gel hybrid material ranged from 4.5 to 4.8 ng g(-1), which is well below the maximum residue limit set by Codex Alimentarius Commission and European Commission. Percentage recovery of OPPs from strawberry, green apple and grape samples with the new hybrid sol-gel SPME material ranged from 65 to 125% with good precision of the method (%RSD) ranging from 0.3 to 7.4%.
    Matched MeSH terms: Solid Phase Microextraction/instrumentation*
  2. Lasekan O, Khatib A, Juhari H, Patiram P, Lasekan S
    Food Chem, 2013 Dec 1;141(3):2089-97.
    PMID: 23870932 DOI: 10.1016/j.foodchem.2013.05.081
    The volatile compounds in four selected African star apple fruit (Chrysophyllum albidum) varieties were isolated and identified using the headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS). A total of 59 compounds were identified. Application of the aroma extract dilution analysis (AEDA) to the aroma distillates from the fruits revealed 45 odour-active compounds in the flavour dilution (FD) factor range of 4-128. Among them, the highest odour activities (FD factors) were determined for methylhexanoate, acetophenone and ethyl dodecanoate. Moreover, aroma lipophilicity appears to reflect molecular conformation. Further analysis of the similarities and differences between the fruit varieties in terms of the key odourants by the application of PLS-DA and PLS-regression coefficient showed strong positive correlation between the very sweet/sweet varieties and 10 key odourants. The odourants included ethyl acetate, acetyl methyl carbinol, methylhexanoate, sabinene, p-cymene, methylbenzoate, ethylbenzoate, geraniol, cis-α-bergomotene, acetophenone, and ethyl dodecanoate.
    Matched MeSH terms: Solid Phase Microextraction/instrumentation
  3. Boon YH, Mohamad Zain NN, Mohamad S, Osman H, Raoov M
    Food Chem, 2019 Apr 25;278:322-332.
    PMID: 30583379 DOI: 10.1016/j.foodchem.2018.10.145
    Poly(β-cyclodextrin functionalized ionic liquid) immobilized magnetic nanoparticles (Fe3O4@βCD-Vinyl-TDI) as sorbent in magnetic µ-SPE was developed for the determination of selected polycyclic aromatic hydrocarbons (PAHs) in rice samples coupled with gas chromatographic-flame ionization detector (GC-FID). The nanocomposite was characterized by various tools and significant parameters that affected the extraction efficiency of PAHs were investigated. The calibration curves were linear for the concentration ranging between 0.1 and 500 μg kg-1 with correlation determinations (R2) from 0.9970 to 0.9982 for all analytes. Detection limits ranged at 0.01-0.18 μg kg-1 in real matrix. The RSD values ranged at 2.95%-5.34% (intra-day) and 4.37%-7.05% (inter-day) precision for six varied days. The sorbents showed satisfactory reproducibility in 2.9% to 9.9% range and acceptable recovery values at 80.4%-112.4% were obtained for the real sample analysis. The optimized method was successfully applied to access content safety of selected PAHs for 24 kinds of commercial rice available in Malaysia.
    Matched MeSH terms: Solid Phase Microextraction/instrumentation
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links