Mucins are produced by both benign and malignant gastric epithelium. In general, mucins can be classified into neutral and acidic mucins. The latter are of 2 major types, sulphated (sulphomucins) and carboxylated (sialomucins). A retrospective study was initiated at the Department of Pathology, University Hospital, Kuala Lumpur to histochemically study the mucin profiles of cases of intestinal (IGC) and diffuse (DGC) types of gastric carcinoma in Malaysian patients to determine whether a significant change of mucin type occurs in the event of malignant transformation. 42 IGC and 37 DGC were subjected to alcian blue-periodic acid Schiff and high iron diamine-alcian blue histochemical staining. In addition, 18 cases of gastrectomies performed for benign lesions in the stomach served as normal controls. The number of cases of IGC and DGC which exhibited sulphomucin production was significantly increased (p < 0.001) compared to normal controls. Also, the number of cases of DGC which produced neutral mucin were significantly less (p < 0.05) than the control group. However, there was no significant difference between the number of IGC and DGC cases which demonstrated sialomucin production and normal controls. It appears that while not pathognomonic, a lack of neutral mucin production should alert the pathologist to the possibility of a gastric malignancy, in particular DGC. The likelihood of a malignant lesion would be further supported if there is an increased sulphomucin production.
Individuals who are obese are at a greater risk of developing gastric cancer. They are however also hyperleptinaemic. Chronic leptin treatment has been shown to upregulate numerous cancer-causing genes in the stomach of male Sprague-Dawley rats. It is however unclear if leptin enhances the effect of gastric carcinogens in vivo. This study was therefore done to investigate the effect of leptin on gastric carcinogenesis in rats treated with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Twenty-four, 6-week old male Sprague-Dawley rats were divided equally into three groups: G1 served as age-matched controls; G2 was treated with MNNG in drinking water ad libitum (200 mg L-1); G3 was given leptin and MNNG. Rats were euthanized after 40 weeks of treatment and their stomachs were removed for histopathology, microarray, and RT-qPCR analysis. Fisher's exact test and one-way ANOVA were used to analyse the data. Fifty percent of the MNNG-treated rats developed gastric hyperplasia (p stomachs of Sprague-Dawley rats and its role in gastric cancer requires further scrutiny.
Currently, it is well established that cancer arises in chronically inflamed tissue. A number of NOD-like receptors (NLRs) form inflammasomes, intracellular multiprotein complexes critical for generating mature pro-inflammatory cytokines (IL-1β and IL-18). As chronic inflammation of the gastric mucosa is a consequence of Helicobacter pylori infection, we investigated the role of genetic polymorphisms and expression of genes involved in the NLR signalling pathway in H. pylori infection and related gastric cancer (GC).
Helicobacter pylori causes persistent infection in the gastric epithelium of more than half of the world's population, leading to the development of severe complications such as peptic ulcer diseases, gastric cancer, and gastric mucosa-associated lymphoid tissue (MALT) lymphoma. Several virulence factors, including cytotoxin-associated gene A (CagA), which is translocated into the gastric epithelium via the type 4 secretory system (T4SS), have been indicated to play a vital role in disease development. Although infection with strains harboring the East Asian type of CagA possessing the EPIYA-A, -B, and -D sequences has been found to potentiate cell proliferation and disease pathogenicity, the exact mechanism of CagA involvement in disease severity still remains to be elucidated. Therefore, we discuss the possible role of CagA in gastric pathogenicity.
Introduction: Microsatellite instability (MSI) is a hallmark of defective DNA mismatch repair (MMR) of genes especially MLH1 and MSH2. It is frequently involved in the carcinogenesis of various tumours including gastric cancer (GC). However, MSI in GCs have not been reported in Malaysia before. Objective: This study was conducted to determine the microsatellite instability (MSI) status in gastric cancer by microsatellite analysis, sequencing, its association with MLH1 and MSH2 protein expression and H.pylori infection by immunohistochemistry. Method: A total of 60 gastric cancer cases were retrieved. DNA was extracted from paired normal and tumour tissues while MLH1 and MSH2 protein expression as well as H. pylori status were determined by IHC staining. For microsatellite analysis, polymerase chain reaction (PCR) was performed for paired tissue samples using a panel of five microsatellite markers. MSI-positive results were subjected for DNA sequencing to assess mutations in the MLH1 and MSH2 genes. Results: Microsatellite analysis identified ten MSI positive cases (16.7%), out of which only six cases (10.3%) showed absence of MLH1 (n=3) or MSH2 (n=3) protein expression by IHC. The most frequent microsatellite marker in MSI positive cases was BAT26 (90%). Nine of ten MSI positive cases were intestinal type with one diffuse and all were located distally. H. pylori infection was detected in 13 of 60 cases (21.7%) including in three MSI positive cases. All these results however were not statistically significant. Our sequencing data displayed novel mutations. However these data were not statistically correlated with expression levels of MLH1 and MSH2 proteins by IHC. This may be due to small sample size to detect small or moderately sized effects. Conclusion: The frequency of MSI in this study was comparable with published results. Determination of affected MMR genes by more than two antibodies may increase the sensitivity of IHC to that of MSI analysis.