The Malaysian Tualang honey (TH) is not only cytotoxic to human breast cancer cell lines but it has recently been reported to promote the anticancer activity induced by tamoxifen in MCF-7 and MDA-MB-231 cells suggesting its potential as an adjuvant for the chemotherapeutic agent. However, tamoxifen produces adverse effects that could be due to its ability to induce cellular DNA damage. Therefore, the study is undertaken to determine the possible modulation of the activity of 4-hydroxytamoxifen (OHT), an active metabolite of tamoxifen, by TH in non-cancerous epithelial cell line, MCF-10A, in comparison with MCF-7 cells.
There has been a number of studies looking into an alternative mode of therapy for the treament of breast cancer via 4-hydroxytamoxifen (4-OHT) transdermal administration.This systematic review aims to compare the safety and efficacy of a transdermal 4-OHT local therapy and oral tamoxifen (oral-T) on the treatment of ductal carcinoma in situ breast cancer. Through a systematic search of health science databases, eligible trials were located and the end points assessed were Ki-67 labeling index, concentration of 4-OHT in breast adipose tissue (ng/g) and plasma (ng/ml). Revman 5.3 version was used to perfom the meta-analysis. Three trials were identified (n=103), while only two were included for meta analysis. The mean difference between the two studies included were 0.40 and -10.58. Overall the I2 value was 89.0%, (Tau2 =53.86) and the differences between the two trials were statistically significant p=0.002. The meta analysis of the randomized controlled trials showed that the use of local transdermal therapy of 4-OHT gel is more safer than oral-T. However, due to the limited number of studies, the potential use of 4-OHT topical transdermal therapy for the treatment of breast cancer could not be concluded for healthcare professionals.
To study ROCK2 activation in carcinogenesis, mice expressing 4-hydroxytamoxifen (4HT)-activated ROCK2 (K14.ROCK(er)) were crossed with mice expressing epidermal-activated ras(Ha) (HK1.ras(1205)). At 8 weeks, 4HT-treated K14.ROCK(er)/HK1.ras(1205) cohorts exhibited papillomas similar to HK1.ras(1205) controls; however, K14.ROCK(er)/HK1.ras(1205) histotypes comprised a mixed papilloma/well-differentiated squamous cell carcinoma (wdSCC), exhibiting p53 loss, increased proliferation and novel NF-κB expression. By 12 weeks, K14.ROCK(er)/HK1.ras(1205) wdSCCs exhibited increased NF-κB and novel tenascin C, indicative of elevated rigidity; yet despite continued ROCK2 activities/p-Mypt1 inactivation, progression to SCC required loss of compensatory p21 expression. K14.ROCK(er)/HK1.ras(1205) papillomatogenesis also required a wound promotion stimulus, confirmed by breeding K14.ROCK(er) into promotion-insensitive HK1.ras(1276) mice, suggesting a permissive K14.ROCK(er)/HK1.ras(1205) papilloma context (wound-promoted/NF-κB(+)/p53(-)/p21(+)) preceded K14.ROCK(er)-mediated (p-Mypt1/tenascin C/rigidity) malignant conversion. Malignancy depended on ROCK(er)/p-Mypt1 expression, as cessation of 4HT treatment induced disorganized tissue architecture and p21-associated differentiation in wdSCCs; yet tenascin C retention in connective tissue extracellular matrix suggests the rigidity laid down for conversion persists. Novel papilloma outgrowths appeared expressing intense, basal layer p21 that confined endogenous ROCK2/p-Mypt1/NF-κB to supra-basal layers, and was paralleled by restored basal layer p53. In later SCCs, 4HT cessation became irrelevant as endogenous ROCK2 expression increased, driving progression via p21 loss, elevated NF-κB expression and tenascin C-associated rigidity, with p-Mypt1 inactivation/actinomyosin-mediated contractility to facilitate invasion. However, p21-associated inhibition of early-stage malignant progression and the intense expression in papilloma outgrowths, identifies a novel, significant antagonism between p21 and ras(Ha)/ROCK2/NF-κB signalling in skin carcinogenesis. Collectively, these data show that ROCK2 activation induces malignancy in ras(Ha)-initiated/promoted papillomas in the context of p53 loss and novel NF-κB expression, whereas increased tissue rigidity and cell motility/contractility help mediate tumour progression.