Displaying all 8 publications

Abstract:
Sort:
  1. Fernandez-Orozco R, Li L, Harflett C, Shewry PR, Ward JL
    J Agric Food Chem, 2010 Sep 08;58(17):9341-52.
    PMID: 20707366 DOI: 10.1021/jf102017s
    Phenolic acid content and composition have been determined in 26 wheat genotypes grown in Hungary over three consecutive years and at three additional locations (France, United Kingdom, and Poland) during the third year. Fractions comprising free, soluble conjugated, and bound phenolic acids were analyzed using HPLC with measurements being made for individual phenolic acids in each fraction. Statistically significant differences in phenolic acid content occurred across the different growing locations with the average total phenolic acid content being highest in the genotypes grown in Hungary. The growth year in Hungary also had a large impact, especially on the free and conjugated phenolic acid contents. Certain genotypes were more resistant to environmental impacts than others. Of the genotypes with high levels of total phenolic acids, Lynx, Riband, Tommi, and Cadenza were most stable with respect to their total contents, whereas Valoris, Herzog, and Malacca, also high in phenolic acid content, were least stable. Of the three fractions analyzed, the free and conjugated phenolic acids were most variable and were also susceptible to the effect of environment, whereas bound phenolic acids, which comprised the greatest proportion of the total phenolic acids, were the most stable.
    Matched MeSH terms: Triticum/genetics
  2. Ma'arup R, Trethowan RM, Ahmed NU, Bramley H, Sharp PJ
    Plant Sci, 2020 Jun;295:110212.
    PMID: 32534607 DOI: 10.1016/j.plantsci.2019.110212
    Emmer wheat (Triticum dicoccon Schrank) is a potential source of new genetic diversity for the improvement of hexaploid bread wheat. Emmer wheat was crossed and backcrossed to bread wheat and 480 doubled haploids (DHs) were produced from BC1F1 plants with hexaploid appearance derived from 19 crossses. These DHs were screened under well-watered conditions (E1) in 2013 to identify high-yielding materials with similar phenology. One-hundred and eighty seven DH lines selected on this basis, 4 commercial bread wheat cultivars and 9 bread wheat parents were then evaluated in extensive field experiments under two contrasting moisture regimes in north-western NSW in 2014 and 2015. A significant range in the water-use-efficiency of grain production (WUEGrain) was observed among the emmer derivatives. Of these, 8 hexaploid lines developed from 8 different emmer wheat parents had significantly improved intrinsic water-use-efficiency (WUEintr) and instantaneous water-use-efficiency (WUEi) compared to their bread wheat recurrent parents. Accurate and large scale field-based phenotyping was effective in identifying emmer wheat derived lines with superior performance to their hexaploid bread wheat recurrent parents under moisture stress.
    Matched MeSH terms: Triticum/genetics
  3. Hafeez F, Abbas M, Zia K, Ali S, Farooq M, Arshad M, et al.
    PLoS One, 2021;16(10):e0257952.
    PMID: 34644343 DOI: 10.1371/journal.pone.0257952
    Wheat (Triticum aestivum L.) production is significantly altered by the infestation of sucking insects, particularly aphids. Chemical sprays are not recommended for the management of aphids as wheat grains are consumed soon after crop harvests. Therefore, determining the susceptibility of different wheat genotypes and selecting the most tolerant genotype could significantly lower aphid infestation. This study evaluated the susceptibility of six different wheat genotypes ('Sehar-2006', 'Shafaq-2006', 'Faisalabad-2008', 'Lasani-2008', 'Millat-2011' and 'Punjab-2011') to three aphid species (Rhopalosiphum padi Linnaeus, Schizaphis graminum Rondani, Sitobion avenae Fabricius) at various growth stages. Seed dressing with insecticides and plant extracts were also evaluated for their efficacy to reduce the incidence of these aphid species. Afterwards, an economic analysis was performed to compute cost-benefit ratio and assess the economic feasibility for the use of insecticides and plant extracts. Aphids' infestation was recorded from the seedling stage and their population gradually increased as growth progressed towards tillering, stem elongation, heading, dough and ripening stages. The most susceptible growth stage was heading with 21.89 aphids/tiller followed by stem elongation (14.89 aphids/tiller) and dough stage (13.56 aphids/tiller). The genotype 'Punjab-2011' recorded the lower aphid infestation than 'Faisalabad-2008', 'Sehar-2006', 'Lasani-2008' and 'Shafaq-2006'. Rhopalosiphum padi appeared during mid-February, whereas S. graminum and S. avenae appeared during first week of March. Significant differences were recorded for losses in number of grains/spike and 1000-grain weight among tested wheat genotypes. The aphid population had non-significant correlation with yield-related traits. Hicap proved the most effective for the management of aphid species followed by Hombre and Husk among tested seed dressers, while Citrullus colocynthis L. and Moringa oleifera Lam. plant extracts exhibited the highest efficacy among different plant extracts used in the study. Economic analysis depicted that use of Hombre and Hicap resulted in the highest income and benefit cost ratio. Therefore, use of genotype Punjab-2011' and seed dressing with Hombre and Hicap can be successfully used to lower aphid infestation and get higher economic returns for wheat crop.
    Matched MeSH terms: Triticum/genetics*
  4. Watson A, Ghosh S, Williams MJ, Cuddy WS, Simmonds J, Rey MD, et al.
    Nat Plants, 2018 Jan;4(1):23-29.
    PMID: 29292376 DOI: 10.1038/s41477-017-0083-8
    The growing human population and a changing environment have raised significant concern for global food security, with the current improvement rate of several important crops inadequate to meet future demand 1 . This slow improvement rate is attributed partly to the long generation times of crop plants. Here, we present a method called 'speed breeding', which greatly shortens generation time and accelerates breeding and research programmes. Speed breeding can be used to achieve up to 6 generations per year for spring wheat (Triticum aestivum), durum wheat (T. durum), barley (Hordeum vulgare), chickpea (Cicer arietinum) and pea (Pisum sativum), and 4 generations for canola (Brassica napus), instead of 2-3 under normal glasshouse conditions. We demonstrate that speed breeding in fully enclosed, controlled-environment growth chambers can accelerate plant development for research purposes, including phenotyping of adult plant traits, mutant studies and transformation. The use of supplemental lighting in a glasshouse environment allows rapid generation cycling through single seed descent (SSD) and potential for adaptation to larger-scale crop improvement programs. Cost saving through light-emitting diode (LED) supplemental lighting is also outlined. We envisage great potential for integrating speed breeding with other modern crop breeding technologies, including high-throughput genotyping, genome editing and genomic selection, accelerating the rate of crop improvement.
    Matched MeSH terms: Triticum/genetics*
  5. Naroui Rad MR, Abdul Kadir M, Rafii MY, Jaafar HZ, Naghavi MR
    Genet. Mol. Res., 2012;11(4):3882-8.
    PMID: 23212327 DOI: 10.4238/2012.November.12.5
    This study was carried out to evaluate the genetic effect of quantitative trait loci (QTLs) conferring drought tolerance in wheat. A population of 120 F(2) individuals from the cross between the drought-tolerant S-78-11 and drought-sensitive Tajan cultivars were analyzed for their segregation under drought stress conditions. The relative water content under drought stress conditions exhibited continuous variation, indicating the minor gene effects on the trait. Single-marker analysis (SMA) was carried out to detect the main QTL association with drought tolerance. The SMA results revealed that the simple sequence repeat markers GWM182 and GWM292 on chromosome 5D and GWM410 on chromosome 5A exhibited significant association with drought tolerance, accounting for 30, 22, and 21% of the total variation, respectively. The 3 genetic loci, especially GWM182, can be used in marker-assisted selection methods in drought tolerance breeding in wheat.
    Matched MeSH terms: Triticum/genetics*
  6. Fasahat P, Rahman S, Ratnam W
    J Genet, 2014 Apr;93(1):279-92.
    PMID: 24840849
    Starch accumulates in plants as granules in chloroplasts of source organs such as leaves (transitory starch) or in amyloplasts of sink organs such as seeds, tubers and roots (storage starch). Starch is composed of two types of glucose polymers: the essentially linear polymer amylose and highly branched amylopectin. The amylose content of wheat and rice seeds is an important quality trait, affecting the nutritional and sensory quality of two of the world's most important crops. In this review, we focus on the relationship between amylose biosynthesis and the structure, physical behaviour and functionality of wheat and rice grains. We briefly describe the structure and composition of starch and then in more detail describe what is known about the mechanism of amylose synthesis and how the amount of amylose in starch might be controlled. This more specifically includes analysis of GBSS alleles, the relationship between waxy allelic forms and amylose, and related quantitative trait loci. Finally, different methods for increasing or lowering amylose content are evaluated.
    Matched MeSH terms: Triticum/genetics*
  7. Arora S, Steuernagel B, Gaurav K, Chandramohan S, Long Y, Matny O, et al.
    Nat Biotechnol, 2019 02;37(2):139-143.
    PMID: 30718880 DOI: 10.1038/s41587-018-0007-9
    Disease resistance (R) genes from wild relatives could be used to engineer broad-spectrum resistance in domesticated crops. We combined association genetics with R gene enrichment sequencing (AgRenSeq) to exploit pan-genome variation in wild diploid wheat and rapidly clone four stem rust resistance genes. AgRenSeq enables R gene cloning in any crop that has a diverse germplasm panel.
    Matched MeSH terms: Triticum/genetics
  8. Yu G, Hatta A, Periyannan S, Lagudah E, Wulff BBH
    Methods Mol Biol, 2017;1659:207-213.
    PMID: 28856653 DOI: 10.1007/978-1-4939-7249-4_18
    DNA is widely used in plant genetic and molecular biology studies. In this chapter, we describe how to extract DNA from wheat tissues. The tissue samples are ground to disrupt the cell wall. Then cetyltrimethylammonium bromide (CTAB) or sodium dodecyl sulfate (SDS) is used to disrupt the cell and nuclear membranes to release the DNA into solution. A reducing agent, β-mercaptoethanol, is added to break the disulfide bonds between the cysteine residues and to help remove the tanins and polyphenols. A high concentration of salt is employed to remove polysaccharides. Ethylenediaminetetraacetic acid (EDTA) stops DNase activity by chelating the magnesium ions. The nucleic acid solution is extracted with chloroform-isoamyl alcohol (24:1) or 6 M ammonium acetate. The DNA in aqueous phase is precipated with ethanol or isopropanol, which makes DNA less hydrophilic in the presence of sodium ions (Na+).
    Matched MeSH terms: Triticum/genetics*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links