Displaying all 6 publications

Abstract:
Sort:
  1. Goh KSK, Ong TA, Peh SC, Yuen HL, Naicker M
    Med J Malaysia, 2004 Oct;59(4):515-21.
    PMID: 15779585
    Loss of P53 function is regarded as one of the critical steps in colorectal carcinogenesis. This study determines the P53 expression pattern of colorectal carcinoma in a cohort of 116 local patients. There was no significant relationship between overexpression of P53 with tumour stage (p=-0.209, chi square test) and grade (p=0.877, chi square test). Survival analysis using Kaplan-Meier procedure did not show significant relationship between P53 positivity with overall recurrence-free and survival outcome (p=0.3322 and 0.921 respectively; log rank test). Long-term follow-up may give a better evaluation on the prognostic value of P53 overexpression in colorectal carcinoma.
    Matched MeSH terms: Tumor Suppressor Protein p53/analysis*
  2. Noranizah W, Siti-Aishah MA, Munirah MA, Norazlin MH, Rohaizak M, Naqiyah I, et al.
    Clin Ter, 2010;161(2):129-37.
    PMID: 20499026
    Vascular endothelial growth factor (VEGF) is a leading factor for tumour angiogenesis and p53 protein is the product of a tumor suppressor gene. The main aim of the study was to assess the association of p53 protein with VEGF expression in breast carcinoma.
    Matched MeSH terms: Tumor Suppressor Protein p53/analysis
  3. Azlin AH, Looi LM, Cheah PL
    Asian Pac J Cancer Prev, 2014;15(9):3959-63.
    PMID: 24935581
    The tumour suppressor genes, p53 and pRb, are known to play important roles in neoplastic transformation. While molecular routes to the uncontrolled growth of hepatocytes, leading to primary liver cancer have generated considerable interest, the roles of p53 and pRb mutations in hepatocellular carcinoma (HCC) and hepatoblastoma (HB) remain to be clarified. We examined the immunohistochemical expression of p53 and pRb gene products in 26 HCC and 9 HB, sampled into tissue microarray blocks. 10 (38%) of 26 HCC showed > 10% tumour nuclear staining for p53 protein, 3 of these also being HbsAg positive. Conversely, none of 9 HB expressed nuclear p53 immunopositivity. Some 24 (92%) HCC and 8 (89%) HB showed loss of pRb nuclear expression. Two of the 26 HCC and one of the 9 HB showed >10% tumour nuclear staining for pRb protein. Our results suggest that p53 does not have an important role in the development of HB but may contribute in HCC. There is also loss of pRb expression in the majority of HCC and HB, supporting loss of pRb gene function in the hepatocarcinogenesis pathway. However, a comparison of the staining profiles of p53 and pRb proteins in HCC and HB did not reveal a consistent pattern to differentiate between the two types of tumours immunohistochemically. Hence the use of p53 and pRB protein expression has no contribution in the situation where there is a diagnostic difficulty in deciding between HCC and HB.
    Matched MeSH terms: Tumor Suppressor Protein p53/analysis
  4. Tan GC, Sharifah NA, Shiran MS, Salwati S, Hatta AZ, Paul-Ng HO
    Asian Pac J Cancer Prev, 2008 Oct-Dec;9(4):781-4.
    PMID: 19256776
    The differentiation between cervical intraepithelial neoplasia 3 (CIN 3) and early squamous cell carcinoma (SCC) of the cervix may be difficult in certain situations. Identification of invasion beyond the basement membrane is the gold standard for the diagnosis of the latter. The objective of this study was to determine whether the use of Ki-67 and p53 could help in solving the above dilemma. This was a retrospective study on 61 cases of cervical neoplasms comprising of 25 cases of CIN 3 and 36 SCC. All cases were evaluated by immunohistochemistry using Ki-67 and p53 monoclonal antibodies. Results showed that the differences of Ki-67 and p53 expression between CIN 3 and SCC were statistically significant. In conclusion, Ki-67 and p53 may serve as helpful adjuncts to routinely-stained histological sections in differentiating between CIN 3 and SCC.
    Matched MeSH terms: Tumor Suppressor Protein p53/analysis*
  5. Saedi TA, Ghafourian S, Jafarlou M, Sabariah MN, Ismail P, Eusni RM, et al.
    J Biol Regul Homeost Agents, 2015 Apr-Jun;29(2):395-9.
    PMID: 26122228
    Tumor protein p53 encoded by the TP53 gene in humans is known as a cancer biomarker in patients diagnosed with cancer, and it plays an essential role in apoptosis, genomic stability, and inhibition of angiogenesis. Cancer therapies with common chemotherapy methods are effective, as known, but have some side effects. Berberis vulgaris is traditionally administrated as a cancer drug. The current research aims to evaluate p53 as a biomarker in WEHI-3 cell line and to demonstrate the Berberis vulgaris fruit crude extract (BVFCE) as a new anticancer drug. For this purpose, we evaluated the effect of BVFCE in different concentrations against WEHI-3cell line in vitro and determined the quantitative level of p53 gene in the treated WEHI-3 cells. The results demonstrated that even at only 1 mg/ml concentration of Berberis vulgaris crude extract, there was a low level of p53 biomarker expression on WEHI-3 cells in comparison with doxorubicin. Therefore, the current study suggests BVFCE as a reliable anti-leukaemic drug and candidate for anticancer therapy. However, further investigation need be carried out to confirm its efficiency in vivo.
    Matched MeSH terms: Tumor Suppressor Protein p53/analysis
  6. Al-Qubaisi MS, Rasedee A, Flaifel MH, Ahmad SH, Hussein-Al-Ali S, Hussein MZ, et al.
    Int J Nanomedicine, 2013;8:4115-29.
    PMID: 24204141 DOI: 10.2147/IJN.S50061
    The long-term objective of the present study was to determine the ability of NiZn ferrite nanoparticles to kill cancer cells. NiZn ferrite nanoparticle suspensions were found to have an average hydrodynamic diameter, polydispersity index, and zeta potential of 254.2 ± 29.8 nm, 0.524 ± 0.013, and -60 ± 14 mV, respectively. We showed that NiZn ferrite nanoparticles had selective toxicity towards MCF-7, HepG2, and HT29 cells, with a lesser effect on normal MCF 10A cells. The quantity of Bcl-2, Bax, p53, and cytochrome C in the cell lines mentioned above was determined by colorimetric methods in order to clarify the mechanism of action of NiZn ferrite nanoparticles in the killing of cancer cells. Our results indicate that NiZn ferrite nanoparticles promote apoptosis in cancer cells via caspase-3 and caspase-9, downregulation of Bcl-2, and upregulation of Bax and p53, with cytochrome C translocation. There was a concomitant collapse of the mitochondrial membrane potential in these cancer cells when treated with NiZn ferrite nanoparticles. This study shows that NiZn ferrite nanoparticles induce glutathione depletion in cancer cells, which results in increased production of reactive oxygen species and eventually, death of cancer cells.
    Matched MeSH terms: Tumor Suppressor Protein p53/analysis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links