Displaying all 3 publications

Abstract:
Sort:
  1. Tou KAS, Rehman K, Ishak WMW, Zulfakar MH
    Drug Dev Ind Pharm, 2019 Sep;45(9):1451-1458.
    PMID: 31216907 DOI: 10.1080/03639045.2019.1628042
    Objective: The aim of this study was to develop a coenzyme Q10 nanoemulsion cream, characterize and to determine the influence of omega fatty acids on the delivery of coenzyme Q10 across model skin membrane via ex vivo and in silico techniques. Methods: Coenzyme Q10 nanoemulsion creams were prepared using natural edible oils such as linseed, evening primrose, and olive oil. Their mechanical features and ability to deliver CoQ10 across rat skin were characterized. Computational docking analysis was performed for in silico evaluation of CoQ10 and omega fatty acid interactions. Results: Linseed, evening primrose, and olive oils each produced nano-sized emulsion creams (343.93-409.86 nm) and exhibited excellent rheological features. The computerized docking studies showed favorable interactions between CoQ10 and omega fatty acids that could improve skin permeation. The three edible-oil nanoemulsion creams displayed higher ex vivo skin permeation and drug flux compared to the liquid-paraffin control cream. The linseed oil formulation displayed the highest skin permeation (3.97 ± 0.91 mg/cm2) and drug flux (0.19 ± 0.05 mg/cm2/h). Conclusion: CoQ10 loaded-linseed oil nanoemulsion cream displayed the highest skin permeation. The highest permeation showed by linseed oil nanoemulsion cream may be due to the presence of omega-3, -6, and -9 fatty acids which might serve as permeation enhancers. This indicated that the edible oil nanoemulsion creams have potential as drug vehicles that enhance CoQ10 delivery across skin.
    Matched MeSH terms: Ubiquinone/administration & dosage
  2. Zulfakar MH, Chan LM, Rehman K, Wai LK, Heard CM
    AAPS PharmSciTech, 2018 Apr;19(3):1116-1123.
    PMID: 29181705 DOI: 10.1208/s12249-017-0923-x
    Coenzyme Q10 (CoQ10) is a vitamin-like oil-soluble molecule that has anti-oxidant and anti-ageing effects. To determine the most optimal CoQ10 delivery vehicle, CoQ10 was solubilised in both water and fish oil, and formulated into hydrogel, oleogel and bigel. Permeability of CoQ10 from each formulation across porcine ear skin was then evaluated. Furthermore, the effects of the omega-3 fatty eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids from fish oil on skin permeation were investigated by means of nuclear magnetic resonance (NMR) and computerised molecular modelling docking experiments. The highest drug permeation was achieved with the bigel formulation that proved to be the most effective vehicle in delivering CoQ10 across the skin membrane due to a combination of its adhesive, viscous and lipophilic properties. Furthermore, the interactions between CoQ10 and fatty acids revealed by NMR and molecular modelling experiments likely accounted for skin permeability of CoQ10. NMR data showed dose-dependent changes in proton chemical shifts in EPA and DHA. Molecular modelling revealed complex formation and large binding energies between fatty acids and CoQ10. This study advances the knowledge about bigels as drug delivery vehicles and highlights the use of NMR and molecular docking studies for the prediction of the influence of drug-excipient relationships at the molecular level.
    Matched MeSH terms: Ubiquinone/administration & dosage
  3. Nafeeza MI, Kang TT
    Int J Vitam Nutr Res, 2005 Mar;75(2):149-55.
    PMID: 15929636
    Nonsteroidal anti-inflammatory drugs and their adverse effects on the gastric mucosa are yet another set of unresolved medical problems. This study examined the effects of various antioxidants on several gastric parameters after a single exposure to indomethacin. Forty-eight male rats of the Sprague-Dawley (200-250 g) strain were randomly divided to receive a single antioxidant (tocopherol, tocotrienol, or ubiquinone) or a combination of two (tocopherol-tocotrienol, tocopherol-ubiquinone or tocotrienol-ubiquinone) for 28 days. The rats were then challenged with a single dose of indomethacin and killed six hours later. Findings showed that the severity of gastric lesions was comparable in all groups. Only groups that received a combination of antioxidants exhibited reduced lipid peroxidation compared with all other groups (p < 0.05). The combination groups had a higher level of gastric prostaglandin E2 (PGE2) content compared with all other groups (p < 0.05). There was no significant difference among the groups in the gastric acid concentration and the glutathione/oxidized glutathione (GSH/GSSG) ratio. We conclude that although supplementation of these antioxidants in combination had desirable effects on lipid peroxidation and gastric PGE2 level, they did not reduce the lesions produced by indomethacin.
    Matched MeSH terms: Ubiquinone/administration & dosage*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links