Displaying all 2 publications

Abstract:
Sort:
  1. Ali A, Logeswaran R
    Comput Biol Med, 2007 Aug;37(8):1141-7.
    PMID: 17126314
    The 3D ultrasound systems produce much better reproductions than 2D ultrasound, but their prohibitively high cost deprives many less affluent organization this benefit. This paper proposes using the conventional 2D ultrasound equipment readily available in most hospitals, along with a single conventional digital camera, to construct 3D ultrasound images. The proposed system applies computer vision to extract position information of the ultrasound probe while the scanning takes place. The probe, calibrated in order to calculate the offset of the ultrasound scan from the position of the marker attached to it, is used to scan a number of geometrical objects. Using the proposed system, the 3D volumes of the objects were successfully reconstructed. The system was tested in clinical situations where human body parts were scanned. The results presented, and confirmed by medical staff, are very encouraging for cost-effective implementation of computer-aided 3D ultrasound using a simple setup with 2D ultrasound equipment and a conventional digital camera.
    Matched MeSH terms: Ultrasonography/statistics & numerical data
  2. Srichan W, Thasanasuwan W, Kijboonchoo K, Rojroongwasinkul N, Wimonpeerapattana W, Khouw I, et al.
    Eur J Clin Nutr, 2016 08;70(8):894-7.
    PMID: 26508460 DOI: 10.1038/ejcn.2015.180
    BACKGROUND/OBJECTIVES: Quantitative ultrasound (QUS) is used to measure bone quality and is known to be safe, radiation free and relatively inexpensive compared with dual-energy X-ray absorptiometry (DXA) that is considered the gold standard for bone status assessments. However, there is no consensus regarding the validity of QUS for measuring bone status. The aim of this study was to compare QUS and DXA in assessing bone status in Thai children.

    SUBJECTS/METHODS: A total of 181 Thai children (90 boys and 91 girls) aged 6 to 12 years were recruited. Bone status was measured by two different techniques in terms of the speed of sound (SOS) using QUS and bone mineral density (BMD) using DXA. Calcium intake was assessed by 24 h diet recall. Pearson's correlation, κ-statistic and Bland and Altman analysis were used to assess the agreement between the methods.

    RESULTS: There was no correlation between the two different techniques. Mean difference (s.d.) of the Z-scores of BMD and SOS was -0.61 (1.27) that was different from zero (P<0.05). Tertiles of Z-scores of BMD and QUS showed low agreement (κ 0.022, P=0.677) and the limits of agreement in Bland and Altman statistics were wide.

    CONCLUSIONS: Although QUS is easy and convenient to use, the SOS measurements at the radius seem not appropriate for assessing bone quality status.

    Matched MeSH terms: Ultrasonography/statistics & numerical data*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links