Hypertension is one of the leading causes of mortality in relation to the cardiovascular conditions and easily the most overlooked and poorly managed disease in mankind. With well over 200 drugs available in the market globally, there is still an urgency to search for antihypertensive alternatives due to the subpar efficacy and unwarranted side effects of the current choices. Present studies reported over 250 types of plant-derived compounds were being investigated for potential pharmacological effects on the vasculature in the last 3 decades. There were numerous literatures that claimed various compounds exhibiting vasorelaxant properties to a certain extent with low numbers of these compounds being successfully adapted into the current medicinal practice for treatment of hypertension. The issue is the scarcity of reviews that summarizes the discovery of this field and the lack of thorough comparison of these compounds to identify which of these vasodilators should be the next face of hypertension management. Thus, this review is aiming towards identifying the relationship between a major class of plant-derived compounds, flavonoid's activity as a vasodilator with their signalling pathways and their structural characteristics according to their vasorelaxant properties. Interestingly, we found that both nitric oxide and voltage-operated calcium channels pathways, and two of the flavonoid's structural characteristics play crucial roles in eliciting strong vasorelaxant effects. We have faith that the insights of this review will serve as a reference for those researching similar topics in the future and potentially lead to the development of more promising antihypertensive alternative.
The development of vasorelaxant as the antihypertensive drug is important as it produces a rapid and direct relaxation effect on the blood vessel muscles. Resveratrol (RV), as the most widely studied stilbenoid and the lead compound, inducing the excellent vasorelaxation effect through the multiple signalling pathways. In this study, the in vitro vascular response of the synthesized trans-stilbenoid derivatives, SB 1-8e were primarily evaluated by employing the phenylephrine (PE)-precontracted endothelium-intact isolated aortic rings. Herein we report trans-3,4,4'-trihydroxystilbene (SB 8b) exhibited surprisingly more than 2-fold improvement to the maximal relaxation (Rmax) of RV. This article also highlights the characterization of the aromatic protons in terms of their unique splitting patterns in 1H NMR.