Displaying all 3 publications

Abstract:
Sort:
  1. Hasan F, Setia Budi H, Ramasamy R, Tantiana T, Ridwan RD, Winoto ER, et al.
    F1000Res, 2024;13:1080.
    PMID: 39866729 DOI: 10.12688/f1000research.155987.2
    BACKGROUND: The interaction between Streptococcus mutans (S. mutans) and Veillonella species (Veillonella spp.) is unclear. This study aims to investigate the interaction between S. mutans and Veillonella spp. on caries development using systematic review.

    METHODS: This systematic review was accorded to the guideline of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses. Three electronic databases, namely PubMed, Embase, and the Cochrane library, were used to conduct a systematic search for eligible studies from their inception until July 18, 2023. PROSPERO registration number was No. CRD42023445968.

    RESULTS: We initially identified 4,774 articles. After eliminating duplicates and irrelevant articles, 11 studies met the inclusion criteria. The studies revealed important aspects of the relationship between S. mutans and Veillonella spp. in dental caries. One significant finding is that Veillonella spp. can affect the acid production capacity of S. mutans. Some studies indicate that Veillonella spp. can inhibit the acid production by S. mutans, potentially reducing the cariogenic process. Another aspect is the competition for substrates. Veillonella spp. utilize lactic acid, which is a by product of S. mutans metabolism, as a source of carbon. This metabolic interaction may decrease the availability of lactic acid for S. mutans, potentially influencing its cariogenic potential.

    CONCLUSIONS: This systematic review highlights the emerging evidence on the interaction between S. mutans and Veillonella spp. in dental caries. The findings suggest that Veillonella spp. can modulate the acid production, and substrate competition of S. mutans, potentially influencing the cariogenic process.

    Matched MeSH terms: Veillonella*
  2. Sinniah D, Sandiford BR, Dugdale AE
    Clin Pediatr (Phila), 1972 Dec;11(12):690-2.
    PMID: 4639314
    Matched MeSH terms: Veillonella*
  3. Mutha NVR, Mohammed WK, Krasnogor N, Tan GYA, Wee WY, Li Y, et al.
    Sci Rep, 2019 05 21;9(1):7664.
    PMID: 31113978 DOI: 10.1038/s41598-019-43979-w
    Many oral bacteria form macroscopic clumps known as coaggregates when mixed with a different species. It is thought that these cell-cell interactions are critical for the formation of mixed-species biofilms such as dental plaque. Here, we assessed the impact of coaggregation between two key initial colonizers of dental plaque, Streptococcus gordonii and Veillonella parvula, on gene expression in each partner. These species were shown to coaggregate in buffer or human saliva. To monitor gene regulation, coaggregates were formed in human saliva and, after 30 minutes, whole-transcriptomes were extracted for sequencing and Dual RNA-Seq analysis. In total, 272 genes were regulated in V. parvula, including 39 genes in oxidoreductase processes. In S. gordonii, there was a high degree of inter-sample variation. Nevertheless, 69 genes were identified as potentially regulated by coaggregation, including two phosphotransferase system transporters and several other genes involved in carbohydrate metabolism. Overall, these data indicate that responses of V. parvula to coaggregation with S. gordonii are dominated by oxidative stress-related processes, whereas S. gordonii responses are more focussed on carbohydrate metabolism. We hypothesize that these responses may reflect changes in the local microenvironment in biofilms when S. gordonii or V. parvula immigrate into the system.
    Matched MeSH terms: Veillonella
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links