In this paper, a personal verification method using finger vein is presented. Finger vein can be considered more secured compared to other hands based biometric traits such as fingerprint and palm print because the features are inside the human body. In the proposed method, a new texture descriptor called local line binary pattern (LLBP) is utilized as feature extraction technique. The neighbourhood shape in LLBP is a straight line, unlike in local binary pattern (LBP) which is a square shape. Experimental results show that the proposed method using LLBP has better performance than the previous methods using LBP and local derivative pattern (LDP).
Resilin functions as an elastic spring that demonstrates extraordinary extensibility and elasticity. Here we use combined techniques, laser scanning confocal microscopy (LSCM) and scanning electron microscopy (SEM) to illuminate the structure and study the function of wing flexibility in damselflies, focusing on the genus Rhinocypha. Morphological studies using LSCM and SEM revealed that resilin patches and cuticular spikes were widespread along the longitudinal veins on both dorsal and ventral wing surfaces. Nanoindentation was performed by using atomic force microscopy (AFM), where the wing samples were divided into three sections (membrane of the wing, mobile and immobile joints). The resulting topographic images revealed the presence of various sizes of nanostructures for all sample sections. The elasticity range values were: membrane (0.04 to 0.16 GPa), mobile joint (1.1 to 2.0 GPa) and immobile joint (1.8 to 6.0 GPa). The elastomeric and glycine-rich biopolymer, resilin was shown to be an important protein responsible for the elasticity and wing flexibility.
We investigated the efficacy of a muscle-stuffed vein (MSV) seeded with neural-transdifferentiated human mesenchymal stem cells as an alternative nerve conduit to repair a 15-mm sciatic nerve defect in athymic rats. Other rats received MSV conduit alone, commercial polyglycolic acid conduit (Neurotube®), reverse autograft, or were left untreated. Motor and sensory functions as well as nerve conductivity were evaluated for 12 weeks, after which the grafts were harvested for histological analyses. All rats in the treatment groups demonstrated a progressive increase in the mean Sciatic Functional Index (motor function) and nerve conduction amplitude (electrophysiological function) and showed positive withdrawal reflex (sensory function) by the 10th week of postimplantation. Autotomy, which is associated with neuropathic pain, was severe in rats treated with conduit without cells; there was mild or no autotomy in the rats of other groups. Histologically, harvested grafts from all except the untreated groups exhibited axonal regeneration with the presence of mature myelinated axons. In conclusion, treatment with MSV conduit is comparable to that of other treatment groups in supporting functional recovery following sciatic nerve injury; and the addition of cells in the conduit alleviates neuropathic pain. Impact Statement It is shown that pretreated muscle-stuffed vein conduit is comparable to that of commercial nerve conduit and autograft in supporting functional recovery following peripheral nerve injury. The addition of neural-differentiated mesenchymal stem cells in the conduit is shown to alleviate neuropathic pain.