The Cornelia de Lange syndrome is a multiple congenital anomaly syndrome characterised by dysmorphic facial features, hirsutism, severe growth and developmental delays, and malformed upper limbs. The prevalence is estimated to be one per 10,000. Recently, several independent groups proved that Cornelia de Lange syndrome is caused by mutations in the NIPBL gene, the human homologue of the Drosophila Nipped-B gene. Here, we present the first clinical case report of a Malay child, a 9-year-old boy with the Cornelia de Lange syndrome. We also report the molecular investigation of the NIPBL gene in this patient.
We report the unusual case of a dysmorphic child with global developmental delay secondary to a familial complex chromosomal rearrangement (CCR). His chromosomal analysis using G-banding and dual colour fluorescence in situ hybridisation with whole chromosome paint revealed a supernumerary marker chromosome as a result of malsegregation of a familial CCR involving chromosomes 7, 12 and 14. The balanced form of this familial CCR was also carried by the patient's mother and maternal grandmother, both of whom had a history of recurrent spontaneous abortions, as well as his maternal uncle, who was infertile. To the best of our knowledge, this is the first reported case of familial CCR involving chromosomes 7, 12 and 14. This case also highlights the importance of chromosomal analysis in children with dysmorphism and developmental delay as well as in adults who suffer from recurrent spontaneous abortions or infertility.
Cornelia de Lange syndrome (CdLS) is a dominant multisystemic malformation syndrome due to mutations in five genes-NIPBL, SMC1A, HDAC8, SMC3, and RAD21. The characteristic facial dysmorphisms include microcephaly, arched eyebrows, synophrys, short nose with depressed bridge and anteverted nares, long philtrum, thin lips, micrognathia, and hypertrichosis. Most affected individuals have intellectual disability, growth deficiency, and upper limb anomalies. This study looked at individuals from diverse populations with both clinical and molecularly confirmed diagnoses of CdLS by facial analysis technology. Clinical data and images from 246 individuals with CdLS were obtained from 15 countries. This cohort included 49% female patients and ages ranged from infancy to 37 years. Individuals were grouped into ancestry categories of African descent, Asian, Latin American, Middle Eastern, and Caucasian. Across these populations, 14 features showed a statistically significant difference. The most common facial features found in all ancestry groups included synophrys, short nose with anteverted nares, and a long philtrum with thin vermillion of the upper lip. Using facial analysis technology we compared 246 individuals with CdLS to 246 gender/age matched controls and found that sensitivity was equal or greater than 95% for all groups. Specificity was equal or greater than 91%. In conclusion, we present consistent clinical findings from global populations with CdLS while demonstrating how facial analysis technology can be a tool to support accurate diagnoses in the clinical setting. This work, along with prior studies in this arena, will assist in earlier detection, recognition, and treatment of CdLS worldwide.
Turner syndrome (TS) is a common multiple congenital anomaly syndrome resulting from complete or partial absence of the second X chromosome. In this study, we explore the phenotype of TS in diverse populations using clinical examination and facial analysis technology. Clinical data from 78 individuals and images from 108 individuals with TS from 19 different countries were analyzed. Individuals were grouped into categories of African descent (African), Asian, Latin American, Caucasian (European descent), and Middle Eastern. The most common phenotype features across all population groups were short stature (86%), cubitus valgus (76%), and low posterior hairline 70%. Two facial analysis technology experiments were conducted: TS versus general population and TS versus Noonan syndrome. Across all ethnicities, facial analysis was accurate in diagnosing TS from frontal facial images as measured by the area under the curve (AUC). An AUC of 0.903 (p < .001) was found for TS versus general population controls and 0.925 (p < .001) for TS versus individuals with Noonan syndrome. In summary, we present consistent clinical findings from global populations with TS and additionally demonstrate that facial analysis technology can accurately distinguish TS from the general population and Noonan syndrome.