Displaying all 6 publications

Abstract:
Sort:
  1. Dharshanan S, Hung CS
    Methods Mol Biol, 2014;1131:105-12.
    PMID: 24515462 DOI: 10.1007/978-1-62703-992-5_7
    Generation of high-producing clones is a perquisite for achieving recombinant protein yields suitable for biopharmaceutical production. However, in many industrially important cell lines used to produce recombinant proteins such as Chinese hamster ovary, mouse myeloma line (NS0), and hybridomas, only a minority of clones show significantly above-average productivity. Thus, in order to have a reasonable probability of finding rare high-producing clones, a large number of clones need to be screened. Limiting dilution cloning is the most commonly used method, owing to its relative simplicity and low cost. However the use of liquid media in this method makes the selection of monoclonal hybridoma and transfectoma colonies to be labor intensive and time consuming, thus significantly limiting the number of clones that can be feasibly screened. Hence, we describe the use of semisolid media to immobilize clones and a high-throughput, automated colony picker (ClonePix FL) to efficiently isolate monoclonal high-producing clones secreting monoclonal antibodies.
    Matched MeSH terms: Antibodies, Monoclonal/metabolism
  2. Ayipo YO, Ajiboye AT, Osunniran WA, Jimoh AA, Mordi MN
    Biochim Biophys Acta Gene Regul Mech, 2022 10;1865(7):194873.
    PMID: 36064110 DOI: 10.1016/j.bbagrm.2022.194873
    Breast cancer remains one of the leading causes of cancer-related deaths globally and the most prominent among females, yet with limited effective therapeutic options. Most of the current medications are challenged by various factors including low efficacy, incessant resistance, immune evasion and frequent recurrence of the disease. Further understanding of the prognosis and identification of plausible therapeutic channels thus requires multimodal approaches. In this review, epigenetics studies of several pathways to BC oncogenesis via the inducement of oncogenic changes on relevant markers have been overviewed. Similarly, the counter-epigenetic mechanisms to reverse such changes as effective therapeutic strategies were surveyed. The epigenetic oncogenesis occurs through several pathways, notably, DNMT-mediated hypermethylation of DNA, dysregulated expression for ERα, HER2/ERBB and PR, histone modification, overexpression of transcription factors including the CDK9-cyclin T1 complex and suppression of tumour suppressor genes. Scientifically, the regulatory reversal of the mechanisms constitutes effective epigenetic approaches for mitigating BC initiation, progression and metastasis. These were exhibited at various experimental levels by classical chemotherapeutic agents including some repurposable drugs, endocrine inhibitors, monoclonal antibodies and miRNAs, natural products, metal complexes and nanoparticles. Dozens of the potential candidates are currently in clinical trials while others are still at preclinical experimental stages showing promising anti-BC efficacy. The review presents a model for a wider understanding of epigenetic oncogenic pathways to BC and reveals plausible channels for reversing the unpleasant changes through epigenetic modifications. It advances the science of therapeutic designs for ameliorating the global burden of BC upon further translational studies.
    Matched MeSH terms: Antibodies, Monoclonal/metabolism
  3. Leow CH, Fischer K, Leow CY, Braet K, Cheng Q, McCarthy J
    Malar J, 2018 Oct 24;17(1):383.
    PMID: 30355309 DOI: 10.1186/s12936-018-2531-y
    BACKGROUND: Malaria rapid diagnostic tests (RDTs) represent an important antibody based immunoassay platform. Unfortunately, conventional monoclonal antibodies are subject to degradation shortening shelf lives of RDTs. The variable region of the receptor (VNAR) from shark has a potential as alternative to monoclonal antibodies in RDTs due to high thermal stability.

    METHODS: In this study, new binders derived from shark VNAR domains library were investigated. Following immunization of a wobbegong shark (Orectolobus ornatus) with three recombinant malaria biomarker proteins (PfHRP2, PfpLDH and Pvaldolase), a single domain antibody (sdAb) library was constructed from splenocytes. Target-specific VNAR phage were isolated by panning. One specific clone was selected for expression in Escherichia coli expression system, and study of binding reactivity undertaken.

    RESULTS: The primary VNAR domain library possessed a titre of 1.16 × 106 pfu/mL. DNA sequence analysis showed 82.5% of isolated fragments appearing to contain an in-frame sequence. After multiple rounds of biopanning, a highly dominant clone specific to PfHRP2 was identified and selected for protein production in an E. coli expression system. Biological characterization showed the recombinant protein expressed in periplasmic has better detection sensitivity than that of cytoplasmic proteins. Assays of binding activity indicated that its reactivity was inferior to the positive control mAb C1-13.

    CONCLUSIONS: Target-specific bacteriophage VNARs were successfully isolated after a series of immunization, demonstrating that phage display technology is a useful tool for selection of antigen binders. Generation of new binding reagents such as VNAR antibodies that specifically recognize the malaria biomarkers represents an appealing approach to improve the performance of RDTs.

    Matched MeSH terms: Antibodies, Monoclonal/metabolism
  4. Chan SW, Ong GI, Nathan S
    J. Biochem. Mol. Biol., 2004 Sep 30;37(5):556-64.
    PMID: 15479619
    A recombinant Fab monoclonal antibody (Fab) C37, previously obtained by phage display and biopanning of a random antibody fragment library against Burkholderia pseudomallei protease, was expressed in different strains of Escherichia coli. E. coli strain HB2151 was deemed a more suitable host for Fab expression than other E. coli strains when grown in media supplemented with 0.2 % glycerol. The expressed Fab fragment was purified by affinity chromatography on a Protein G-Sepharose column, and the specificity of the recombinant Fab C37 towards B. pseudomallei protease was proven by Western blotting, enzyme-linked immunosorbent assay (ELISA) and by proteolytic activity neutralization. In addition, polyclonal antibodies against B. pseudomallei protease were produced in rabbits immunized with the protease. These were isolated from high titer serum by affinity chromatography on recombinant-Protein A-Sepharose. Purified polyclonal antibody specificity towards B. pseudomallei protease was proven by Western blotting and ELISA.
    Matched MeSH terms: Antibodies, Monoclonal/metabolism
  5. Lee WC, Malleret B, Lau YL, Mauduit M, Fong MY, Cho JS, et al.
    Blood, 2014 May 01;123(18):e100-9.
    PMID: 24652986 DOI: 10.1182/blood-2013-12-541698
    Rosetting phenomenon has been linked to malaria pathogenesis. Although rosetting occurs in all causes of human malaria, most data on this subject has been derived from Plasmodium falciparum. Here, we investigate the function and factors affecting rosette formation in Plasmodium vivax. To achieve this, we used a range of novel ex vivo protocols to study fresh and cryopreserved P vivax (n = 135) and P falciparum (n = 77) isolates from Thailand. Rosetting is more common in vivax than falciparum malaria, both in terms of incidence in patient samples and percentage of infected erythrocytes forming rosettes. Rosetting to P vivax asexual and sexual stages was evident 20 hours postreticulocyte invasion, reaching a plateau after 30 hours. Host ABO blood group, reticulocyte count, and parasitemia were not correlated with P vivax rosetting. Importantly, mature erythrocytes (normocytes), rather than reticulocytes, preferentially form rosetting complexes, indicating that this process is unlikely to directly facilitate merozoite invasion. Although antibodies against host erythrocyte receptors CD235a and CD35 had no effect, Ag-binding fragment against the BRIC 4 region of CD236R significantly inhibited rosette formation. Rosetting assays using CD236R knockdown normocytes derived from hematopoietic stem cells further supports the role of glycophorin C as a receptor in P vivax rosette formation.
    Matched MeSH terms: Antibodies, Monoclonal/metabolism
  6. Abdullah WZ, Roshan TM, Hussin A, Zain WS, Abdullah D
    Blood Coagul Fibrinolysis, 2013 Dec;24(8):893-5.
    PMID: 24030118 DOI: 10.1097/MBC.0b013e3283642ee2
    Treatment with thalidomide is associated with vascular thrombosis. The effect of thalidomide on platelet activation is unclear, although the use of aspirin is justified for thromboprophylaxis. A study on platelet activation markers was done among multiple myeloma patients receiving thalidomide therapy with warfarin as thromboprophylaxis. Strict criteria and procedure were set to avoid misinterpretation of platelet activation other than due to the thalidomide's effect. Blood specimen pre and post thalidomide therapy were used for flow cytometric analysis. Platelet surface P-selectin, CD62P expression and PAC-1 (antibody that recognizes conformational change of the GPIIb/IIIa complex) were examined by using three-colour flowcytometer. Increased expression marker for PAC-1 was observed after 4 weeks of thalidomide treatment (P 
    Matched MeSH terms: Antibodies, Monoclonal/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links