Displaying all 3 publications

Abstract:
Sort:
  1. Abdul-Aziz MH, Sulaiman H, Mat-Nor MB, Rai V, Wong KK, Hasan MS, et al.
    Intensive Care Med, 2016 Oct;42(10):1535-1545.
    PMID: 26754759 DOI: 10.1007/s00134-015-4188-0
    PURPOSE: This study aims to determine if continuous infusion (CI) is associated with better clinical and pharmacokinetic/pharmacodynamic (PK/PD) outcomes compared to intermittent bolus (IB) dosing in critically ill patients with severe sepsis.

    METHODS: This was a two-centre randomised controlled trial of CI versus IB dosing of beta-lactam antibiotics, which enrolled critically ill participants with severe sepsis who were not on renal replacement therapy (RRT). The primary outcome was clinical cure at 14 days after antibiotic cessation. Secondary outcomes were PK/PD target attainment, ICU-free days and ventilator-free days at day 28 post-randomisation, 14- and 30-day survival, and time to white cell count normalisation.

    RESULTS: A total of 140 participants were enrolled with 70 participants each allocated to CI and IB dosing. CI participants had higher clinical cure rates (56 versus 34 %, p = 0.011) and higher median ventilator-free days (22 versus 14 days, p MIC than the IB arm on day 1 (97 versus 70 %, p beta-lactam antibiotics. Continuous beta-lactam infusion may be mostly advantageous for critically ill patients with high levels of illness severity and not receiving RRT. Malaysian National Medical Research Register ID: NMRR-12-1013-14017.

    Matched MeSH terms: beta-Lactams/administration & dosage*
  2. Roberts JA, Abdul-Aziz MH, Davis JS, Dulhunty JM, Cotta MO, Myburgh J, et al.
    Am J Respir Crit Care Med, 2016 Sep 15;194(6):681-91.
    PMID: 26974879 DOI: 10.1164/rccm.201601-0024OC
    RATIONALE: Optimization of β-lactam antibiotic dosing for critically ill patients is an intervention that may improve outcomes in severe sepsis.

    OBJECTIVES: In this individual patient data meta-analysis of critically ill patients with severe sepsis, we aimed to compare clinical outcomes of those treated with continuous versus intermittent infusion of β-lactam antibiotics.

    METHODS: We identified relevant randomized controlled trials comparing continuous versus intermittent infusion of β-lactam antibiotics in critically ill patients with severe sepsis. We assessed the quality of the studies according to four criteria. We combined individual patient data from studies and assessed data integrity for common baseline demographics and study endpoints, including hospital mortality censored at 30 days and clinical cure. We then determined the pooled estimates of effect and investigated factors associated with hospital mortality in multivariable analysis.

    MEASUREMENTS AND MAIN RESULTS: We identified three randomized controlled trials in which researchers recruited a total of 632 patients with severe sepsis. The two groups were well balanced in terms of age, sex, and illness severity. The rates of hospital mortality and clinical cure for the continuous versus intermittent infusion groups were 19.6% versus 26.3% (relative risk, 0.74; 95% confidence interval, 0.56-1.00; P = 0.045) and 55.4% versus 46.3% (relative risk, 1.20; 95% confidence interval, 1.03-1.40; P = 0.021), respectively. In a multivariable model, intermittent β-lactam administration, higher Acute Physiology and Chronic Health Evaluation II score, use of renal replacement therapy, and infection by nonfermenting gram-negative bacilli were significantly associated with hospital mortality. Continuous β-lactam administration was not independently associated with clinical cure.

    CONCLUSIONS: Compared with intermittent dosing, administration of β-lactam antibiotics by continuous infusion in critically ill patients with severe sepsis is associated with decreased hospital mortality.

    Matched MeSH terms: beta-Lactams/administration & dosage*
  3. Mohd Hafiz AA, Staatz CE, Kirkpatrick CM, Lipman J, Roberts JA
    Minerva Anestesiol, 2012 Jan;78(1):94-104.
    PMID: 21730935
    Beta-lactam antibiotics display time-dependant pharmacodynamics whereby constant antibiotic concentrations rather than high peak concentrations are most likely to result in effective treatment of infections caused by susceptible bacteria. Continuous administration has been suggested as an alternative strategy, to conventional intermittent dosing, to optimise beta-lactam pharmacokinetic/pharmacodynamic (PK/PD) properties. With the availability of emerging data, we elected to systematically investigate the published literature describing the comparative PK/PD and clinical outcomes of beta-lactam antibiotics administered by continuous or intermittent infusion. We found that the studies have been performed in various patient populations including critically ill, cancer and cystic fibrosis patients. Available in vitro PK/PD data conclusively support the administration of beta-lactams via continuous infusion for maximizing bacterial killing from consistent attainment of pharmacodynamic end-points. In addition, clinical outcome data supports equivalence, even with the use of a lower dose by continuous infusion. However, the present clinical data is limited with small sample sizes common with insufficient power to detect advantages in favour of either dosing strategy. With abundant positive pre-clinical data as well as document in vivo PK/PD advantages, large multi-centre trials are needed to describe whether continuous administration of beta-lactams is truly more effective than intermittent dosing.
    Matched MeSH terms: beta-Lactams/administration & dosage*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links